
B4M36ESW: Efficient software

Lecture 3: Benchmarking

Michal Sojka
michal.sojka@cvut.cz

March 3, 2025

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 2 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 2 (Outline)&issue[description]=Insert your question/comment here.

Benchmarking

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 3 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 3 (Outline)&issue[description]=Insert your question/comment here.

Benchmarking

Benchmark

Wikipedia defines benchmark as:

1 the act of running a computer program, a set of programs, or other operations, in

order to assess the relative performance of an object, normally by running a

number of standard tests and trials against it.

2 a benchmarking program itself (i.e. “XY is a free benchmark that tests your

computer’s performance.”)

Object examples:

Hardware

Compiler

Algorithm

…

Types of benchmarks:

Micro-benchmarks (synthetic)

Application benchmarks

feedback 4 / 55

https://en.wikipedia.org/wiki/Benchmark_(computing)
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 4 (Benchmark)&issue[description]=Insert your question/comment here.

Benchmarking

Types of benchmark

In most cases, we are interested in whether some change (in HW, compiler, algorithm, …)

results in speed-up or slow-down.

1 Micro-benchmark

Evaluates a little part of an application (e.g., one of many functions)

It is easy to determine source of speed-up/slow down

Typically, improvements in micro-benchmark do not imply improvements in application

performance

2 Application benchmarks

Evaluates performance of the whole application

Performance is influenced by many real-world factors

For complex applications, it might difficult to determine the source of speed-up/slow-down

feedback 5 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 5 (Types of benchmark)&issue[description]=Insert your question/comment here.

Benchmarking

How to measure software performance?

What to measure?

Execution time

(important – separate part of this lecture)

Memory consumption

Energy

How to measure?

Not as easy as it sounds

See the rest of the lecture

TL;DR: Use and understand statistics.

feedback 6 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 6 (How to measure software performance?)&issue[description]=Insert your question/comment here.

Benchmarking » Energy

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 7 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 7 (Outline)&issue[description]=Insert your question/comment here.

Benchmarking » Energy

Measuring energy

Connect power meter to your computer/board

Use hardware-provided interfaces for power/energy measurement/control

These are more and more common these days

Example

Intel RAPL (Running Average Power Limit)

Allows to monitor and/or limit power consumption of individual components

Package domain, memory domain (DRAM)

Accessible via Model-specific registers (MSRs)

See Intel Software Developer’s Manual: System Programming Guide

feedback 8 / 55

https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 8 (Measuring energy)&issue[description]=Insert your question/comment here.

Benchmarking » Memory consumption

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 9 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 9 (Outline)&issue[description]=Insert your question/comment here.

Benchmarking » Memory consumption

Measuring memory consumption

Under modern OSes, measuring memory usage is surprisingly complex

How programs consume memory?

1 Program memory

Code, static data, heap, stack

Stack is allocated for each thread

Easy: This is what various profilers report

2 Operating system kernel memory

Allocated by the OS kernel on behalf of the program

network buffers, disk and file system caches, system objects (timers, semaphores, …)

Sometimes, it is not possible to account this memory to an individual process – e.g. network

receive buffers.

3 Shared libraries

How to account for memory consumed by libraries shared by multiple programs?

feedback 10 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 10 (Measuring memory consumption)&issue[description]=Insert your question/comment here.

Benchmarking » Memory consumption

Basics of Linux Memory Statistics

Tools like top or htop report several memory statistics
VIRT Total amount of virtual memory reserved by the process. Not all this

memory needs to be backed by physical memory. It does not include
kernel memory.

Example: Allocate 16 GiB of virtual memory without allocating physical

memory immediately.

mmap(NULL, 1ULL << 34, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);

RES Currently resident (physical) memory (does not include swapped memory)

SHR Memory shared with other processes (data, .so)

feedback 11 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 11 (Basics of Linux Memory Statistics)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 12 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 12 (Outline)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Timestamping

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 13 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 13 (Outline)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Timestamping

Timestamping

1 Via system calls
Linux: gettimeofday, clock_gettime(CLOCK_MONOTONIC)
Resolution: depends on available hardware (down to 1 ns),

earlier it was a system tick period (1–10ms)

Overhead: hundreds of CPU cycles (but see next slide)

2 By using hardware directly (e.g. timestamp counter register)
TSC register on x86: resolution 1 clock cycle, overhead few (≈ 8) clock cycles

Similar registers on other architectures
Cons: Can be subject to CPU frequency scaling, TSC counters on different CPU
cores/socketsmay not be synchronized (can result in negative duration if OS migrates the
thread)
static inline uint64_t rdtsc() {

uint64_t ret;
asm volatile ("rdtsc" : "=A" (ret));
return ret;

}

3 Combine both: Virtual syscall
feedback 14 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 14 (Timestamping)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Timestamping

Virtual syscall for fast timestamping

Reading TSC is fast, but HW/frequency/socket dependent

Problematic when two timestamps need to be subtracted

OS kernel knows everything about HW/frequency/socket but calling the kernel has its

overhead

Idea: OS kernel publishes enough information for user space to reliably convert TSC
values to wall-clock times without calling the kernel

time_ns = rdtsc() * tsc_scale + tsc_offset
Virtual Dynamic Shared Object – VDSO

Kernel memory mapped to a process address space

Content looks like a shared library (hence the name)

Application can call ordinary functions from there

cat /proc/$$/maps|grep vdso
gettimeofday(), clock_gettime() are functions implemented in VDSO (they do not call the

kernel)

tsc_scale and tsc_offset are variables stored in VDSO and updated by the kernel when

needed
feedback 15 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 15 (Virtual syscall for fast timestamping)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Timestamping

VDSO inspection

$ gdb myprog
(gdb) run
(gdb) info proc
process 14594
(gdb) !grep vdso /proc/14594/maps
7ffff7fd1000-7ffff7fd2000 r-xp 00000000 00:00 0 [vdso]
(gdb) dump memory /tmp/vdso.so 0x7ffff7fd1000 0x7ffff7fd2000
$ objdump --disassemble /tmp/vdso.so
0000000000000700 <__vdso_gettimeofday@@LINUX_2.6-0x1c0>:
700: 55 push %rbp
701: 48 63 f6 movslq %esi,%rsi
704: 49 89 d2 mov %rdx,%r10
707: 48 c1 e6 04 shl $0x4,%rsi
...
741: 0f 01 f9 rdtscp
...

feedback 16 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 16 (VDSO inspection)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Benchmark design

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 17 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 17 (Outline)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Benchmark design

Measuring execution time

Execution time exhibits variations

Influenced by many factors:

Hardware, input data, compiler, memory layout, measuring overhead, rest of the system,

network load, … you name it

Same factors can be controlled, others cannot

Repeatability of measurements

How to design benchmark experiments properly?

How to measure speedup?

feedback 18 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 18 (Measuring execution time)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Benchmark design

Example

$ make
$ for i in $(seq 10); do \

./find_ellipse ../images/table.jpg 1000 no-gui|grep processImage; \
done

processImage took 880ms
processImage took 870ms
processImage took 921ms
processImage took 876ms
processImage took 876ms
processImage took 874ms
processImage took 867ms
processImage took 875ms
processImage took 872ms
processImage took 872ms

feedback 19 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 19 (Example)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Benchmark design

Example - cont.

$./find_ellipse ../images/table.jpg 10 no-gui|grep RANSAC
RANSAC iteration took 176 µs
RANSAC iteration took 190 µs
RANSAC iteration took 127 µs
RANSAC iteration took 186 µs
RANSAC iteration took 98 µs
RANSAC iteration took 186 µs
RANSAC iteration took 146 µs
RANSAC iteration took 193 µs
RANSAC iteration took 153 µs
RANSAC iteration took 178 µs

feedback 20 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 20 (Example - cont.)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Benchmark design

The Challenge of Reasonable Repetition

Variations

Measurements must be repeated

We want to eliminate the influence of random (non-deterministic) factors

Statistics

Controlled variables (e.g. compiler flags, hardware, algorithm changes) – we are interested how

they impact the results

Random variables (e.g. hardware interrupts, OS scheduler) – we are interested in statistical

properties of our results in face of these variables

Uncontrolled variables – mostly fixed, but can cause bias of the results

Experiment
(Benchmark)

Controlled
variables

Random
variables

Uncontrolled
variables

Results

feedback 21 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 21 (The Challenge of Reasonable Repetition)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Benchmark design

Benchmark goal

Estimate (a confidence interval for) the mean

of execution time of a given benchmark on one

or more platforms.

The mean is the property of the probability

distribution of the random execution times

We can only estimate the mean value from the

measurements

Confidence interval (CI) is important

CI of 95%⇒ in 95% of cases, the true mean

will be within the interval.

Example: Sample means with 50% CIs

Source: By FRuDIxAFLG - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=114452600

feedback 22 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 22 (Benchmark goal)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Benchmark design

Levels of repetition

Results variance occurs typically at multiple levels, e.g.:

iteration inside a program

execution

(re)compilation (if you have a non-deterministic compiler)

Sound benchmarking methodology should evaluate all the levels with random variations

Next slides give answers to:

How to summarize the results?

How many times to repeat the experiment at each level?

As little times as possible to not waste time

As many times as possible to get reasonable confidence in results

feedback 23 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 23 (Levels of repetition)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Summarizing benchmark results

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 24 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 24 (Outline)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Summarizing benchmark results

Basic summarizing techniques
Histogram, mean, median, minimum

Full results of the benchmark can be

represented by a histogram of execution

times. This gives us a lot of information.

	0

	5

	10

	15

	20

	25

	135	140	145 	150	155	160 	165	170	175 	180	185

co
un

t	[
-]

Exec.	time	[ms]

If histogram is too much information (your

boss wants just a single number), we need

to summarize it.

A good summary is amean value with a

confidence interval (see later slides).
If we don’t have time for proper statistics
(mean + CI), sometimesmedian can give
us useful results too.

Usually not sufficient for serious research

papers.

Similarly to median, surprisingly good
statistics of execution time measurement is
a minimum.

It typically represents the situation when

there was no (or little) interference to the

benchmark execution.
See https://easyperf.net/blog/2019/12/30/
Comparing-performance-measurements

feedback 25 / 55

https://easyperf.net/blog/2019/12/30/Comparing-performance-measurements
https://easyperf.net/blog/2019/12/30/Comparing-performance-measurements
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 25 (Basic summarizing techniques)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Summarizing benchmark results

Significance testing

Is it likely that two systems have different performance?

Statistics can answer this with

Significance testing

However, this technique has
problems, especially when used with
results of computer benchmarks – see
Kalibera’s paper.

It is better to ask what is the speedup.

Significance testing is implemented in

the ministat tool (FreeBSD)

From ministat man page

The ministat command was written by

Poul-Henning Kamp out of frustration over

all the bogus benchmark claims made by

people with no understanding of the

importance of uncertainty and statistics.

feedback 26 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 26 (Significance testing)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Summarizing benchmark results

ministat examples

+---+
| +++ + + x x x |
| +++++ +++ x x x x |
| +++++ +++ x xx xxx x x |
| +++++ +++ x xxxxxxx x x x |
| +++++ +++++ xxxxxxxxx x xx x + x|
| |________MA_________| |
||______M_A_______| |
+---+

N Min Max Median Avg Stddev
x 40 88.92 122.527 92.594 93.34845 5.3399441
+ 40 82.313 112.625 84.52 85.447325 4.6810848
Difference at 95.0% confidence

-7.90112 +/- 2.2355
-8.46412% +/- 2.39479%
(Student's t, pooled s = 5.02133)

Difference at 99.5% confidence
-7.90112 +/- 3.59073
-8.46412% +/- 3.84658%

feedback 27 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 27 (ministat examples)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Summarizing benchmark results

ministat examples (cont.)

Too little data with too similar distribution:

+---+
| + + |
|+ x + + + x + + * x x x x xxx +|
| |______________________A______M_______________| |
| |____________________A___M________________| |
+---+

N Min Max Median Avg Stddev
x 10 151.527 155.963 154.936 154.5278 1.4673007
+ 10 151.371 156.096 153.618 153.3248 1.3398755
No difference proven at 95.0% confidence

feedback 28 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 28 (ministat examples (cont.))&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Summarizing benchmark results

Confidence interval

We want to estimate themean of a probability distribution

We only have a limited set of r measurements and know almost nothing about the

distribution

We calculate the average value Ȳ from the measurements

How is the average different from the true mean value?

Ȳ ± SY√
r
qt (r–1)(1 –

α
2
), where

qt (r–1)(1 –
α
2) is (1 –

α
2)-quantile of the Student’s t -distribution with r – 1 degrees of freedom.

α is significance level (e.g. 5%)

We say: Execution time of our benchmark is 25.4± 3.2 ms with 95% confidence.

This means that the true mean is somewhere between 22.2 and 28.6 with probability of

95%.

https://stackoverflow.com/questions/15033511/compute-a-confidence-interval-from-sample-data

feedback 29 / 55

https://stackoverflow.com/questions/15033511/compute-a-confidence-interval-from-sample-data
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 29 (Confidence interval)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Summarizing benchmark results

Visual tests

Calculate and visualize confidence intervals.

Do the two confidence intervals overlap?

No⇒ different performance is likely

Yes⇒ more statistics (or measurements) needed

Hard to estimate speedup and its confidence interval

Note: ministat does not calculate confidence intervals, but standard deviations, i.e.
SY

feedback 30 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 30 (Visual tests)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Summarizing benchmark results

Recommendation

Analysis of results should be statistically rigorous and in

particular should quantify any variation. Report

performance changes with effect size confidence intervals.

feedback 31 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 31 (Recommendation)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Summarizing benchmark results

Useful tools

ministat

Hyperfine (https://github.com/sharkdp/hyperfine)
Julia and Measurements package

(https://github.com/JuliaPhysics/Measurements.jl)

Image credit: ”xkcd: Error Bars” (CC-BY-NC 2.5)

feedback 32 / 55

https://github.com/sharkdp/hyperfine
https://github.com/JuliaPhysics/Measurements.jl
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 32 (Useful tools)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Repeating iterations

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 33 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 33 (Outline)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Repeating iterations

Repeating iterations

Iteration = one execution of a loop body

We are interested in steady state performance

Initialization phase

First few iterations typically include the initialization overheads

Warming up caches, teaching branch predictor, memory allocations

Independent state

Ideally, measurements should be independent, identically distributed (i.i.d.)

Independent: measurement does not depend on any a previous measurement

Independent⇒ initialized

feedback 34 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 34 (Repeating iterations)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Repeating iterations

When a benchmark reaches independent state?

Manual inspection of graphs from measured data

1 run-sequence plot⇒ easy identification of initialization phase⇒ strip

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400 450 500

'seq'

2 Independence assessment – plot the following plots on original and randomly reordered
sequence

lag plot (for several lags – e.g. 1–4)

auto-correlation function

3 Any visible pattern suggests the measurements are not independent

feedback 35 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 35 (When a benchmark reaches independent state?)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Repeating iterations

Lag plot

Dependency of a measured values on the previously measured value.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

LAG 1 of Time [s]

Ti
m

e
[s

]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●●

●

●

●

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

LAG 1 of Time [s]

Ti
m

e
[s

]
feedback 36 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 36 (Lag plot)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Repeating iterations

Auto-correlation function

0 5 10 15 20

−0
.5

0.
0

0.
5

1.
0

LAG

C
or

re
la

tio
n

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LAG

C
or

re
la

tio
n

dependent independent

feedback 37 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 37 (Auto-correlation function)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Repeating iterations

Recommendations

Use this manual procedure just once to find

how many iterations each benchmark, VM

and platform combination requires to reach

an independent state.

If a benchmark does not reach an

independent state in a reasonable time,

take the same iteration from each run.

feedback 38 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 38 (Recommendations)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Repeating executions and compilation

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 39 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 39 (Outline)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Repeating executions and compilation

Repeating executions

Running a benchmark program multiple times

Effect of JIT compiler etc.

Example: Variance in % of different benchmarks from DaCapo/OpenJDK benchmark

suite

What if different executions exhibit higher variance than iterations? (see lusearch9)

Determine initialized and independent state for executions as for iterations.

feedback 40 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 40 (Repeating executions)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Repeating executions and compilation

Repeating compilation

Sometimes even a compiler can

influence the benchmark results.

Why code layout makes a difference?

Effects of instruction caches in the

CPU – see later lecture.

Recommendation

If you cannot control the factor, make it

random!

Experiment: Code layout generated by the

compiler: original vs. randomized

feedback 41 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 41 (Repeating compilation)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Multi-level repetition

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 42 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 42 (Outline)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Multi-level repetition

Multi-level repetition

We have to repeat the experiments to narrow the confidence interval

If the variance occurs at higher levels (execution, compilation), we need to repeat at

least at that level.

Repeating at lower level may be cheaper (no execution overhead, compilation
overhead, etc.)

Time can be saved by repeating at lower levels.

How to find required number of repetitions at each level to reach the given confidence
interval?

Can be formulated mathematically.

If you repeat too little, you have wide confidence intervals.

If you repeat too much, you waste your time with running unnecessary experiments.

feedback 43 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 43 (Multi-level repetition)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Multi-level repetition

Notation

Levels

Lowest level (iteration) = 1

Highest level (e.g. compilation) = n

Initial experiment

bold letters

r1,c1

Real experiment

normal letters

r1, c1

feedback 44 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 44 (Notation)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Multi-level repetition

Initial experiment

Goal is to find the required number of iterations at each level (r1, r2, . . .).

Select number of repetitions (exclusive of warm-up) r1, r2, . . . to be arbitrary but
sufficient value, say 20.

Gather the cost of repetition at each level (time added exclusively by that level, e.g.
compile time)

c1 iteration duration

c2 time execute benchmark up to independent state

c3 compilation time

Measurement times: Yjn...j1 , j1 = 1 . . . r1, j2 = 1 . . . r2, . . .

Calculate arithmetic means for different levels:

Ȳjn•···•

feedback 45 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 45 (Initial experiment)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Multi-level repetition

Variance estimators

After initial experiments, we will calculate n unbiased variance estimators T21, . . . ,T
2
n

They describe how much each level contributes independently to variability in the results

Start with calculating S2
i
– biased estimator of the variance at each level i ,1 ≤ i ≤ n:

S2i =
1∏n

k=i+1 rk

1

ri – 1

rn∑
jn=1

· · ·
ri∑

ji=1

(
Ȳjn ...ji•···• – Ȳjn ...ji+1•···•

)2
Then obtain T 2

i
:

T 2
1 = S21

∀i ,1 < i ≤ n,T 2
i = S2i –

S2
i–1

ri–1

If T 2
i
≤ 0, this level induces little variation and repetitions can be skipped.

feedback 46 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 46 (Variance estimators)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Multi-level repetition

Real Experiment: Confidence Interval

Optimum number of repetitions at different levels r1, . . . , rn–1 can be calculated as:

∀i ,1 ≤ i < n, ri =


√√√√ci+1

ci

T 2
i

T 2
i+1


Then recalculate: S2

n and Ȳjn•···• as before but with data from real experiment.

Asymptotic confidence interval with confidence (1 – α) is:

Ȳ ± t1–α
2 ,ν

√
S2
n

rn

where t1–α
2 ,ν

is (1 – α
2
)-quantile of the t -distribution with ν = rn – 1 degrees of freedom.

feedback 47 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 47 (Real Experiment: Confidence Interval)&issue[description]=Insert your question/comment here.

Measuring and summarizing execution time » Multi-level repetition

Recommendation

For each benchmark/VM/platform, conduct a

dimensioning experiment to establish the optimal

repetition counts for each but the top level of the real

experiment. Re-dimension only if the

benchmark/VM/platform changes.

feedback 48 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 48 (Recommendation)&issue[description]=Insert your question/comment here.

Measuring speedup

Outline

1 Benchmarking

Energy

Memory consumption

2 Measuring and summarizing execution time

Timestamping

Benchmark design

Summarizing benchmark results

Repeating iterations

Repeating executions and compilation

Multi-level repetition

3 Measuring speedup

feedback 49 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 49 (Outline)&issue[description]=Insert your question/comment here.

Measuring speedup

Measuring speedup

Speedup: “With my optimization, the program runs 10% faster.”

Speedup is the ratio of two execution times (random variables)

What is the speedup confidence interval?

E.g. 10%±2% faster with confidence of 99%

How many times to repeat the speedup experiments?

feedback 50 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 50 (Measuring speedup)&issue[description]=Insert your question/comment here.

Measuring speedup

Speedup confidence interval

Ȳ – old system execution time (average of measured times)

Ȳ ′ – new system execution time

Speedup: Ȳ ′/Ȳ

Speedup confidence interval:

Ȳ · Ȳ ′ ±
√
(Ȳ · Ȳ ′)2 – (Ȳ 2 – h2)(Ȳ ′2 – h′2)

Ȳ 2 – h2

h =

√
t2α
2 ,ν

S2
n

rn
h′ =

√
t2α
2 ,ν

S ′2
n

rn

feedback 51 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 51 (Speedup confidence interval)&issue[description]=Insert your question/comment here.

Measuring speedup

Speedup confidence interval
Simplified calculation + example

Relation of confidence interval of the speedup to confidence interval on individual

measurements:

es ≈ Ȳ ′

Ȳ

√
e2 + e′2

es, e, e
′: relative half-width of the speedup/old/new confidence intervals, i.e. e = h/Ȳ

Why is speedup confidence interval important?

Old system: 10±1 s, e = 0.1 (10%)

New system: 9±0.9 s, e′ = 0.1
Speedup: ≈0.9±0.13, es = 0.13
Outcome: Speedup can be 1, i.e. no speedup!

feedback 52 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 52 (Speedup confidence interval)&issue[description]=Insert your question/comment here.

Measuring speedup

Calculations with confidence intervals in Julia
To type ±, write \pm and press <Tab>

_ _ _(_)_ | Documentation: https://docs.julialang.org
(_) | (_) (_) |
_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.

| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 1.7.2 (2022-02-06)

_/ |__'_|_|_|__'_| | Official https://julialang.org/ release
|__/ |

julia> using Measurements

julia> old = 10±1
10.0 ± 1.0

julia> new = 9±0.9
9.0 ± 0.9

julia> speedup = new/old
0.9 ± 0.13

feedback 53 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 53 (Calculations with confidence intervals in Julia)&issue[description]=Insert your question/comment here.

Measuring speedup

Recommendation

Always provide effect size confidence intervals for results.

Either for single systems or for speedups.

feedback 54 / 55

https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 54 (Recommendation)&issue[description]=Insert your question/comment here.

Measuring speedup

References

Kalibera, T. and Jones, R. E. (2013) Rigorous Benchmarking in Reasonable Time. In: ACM
SIGPLAN International Symposium on Memory Management (ISMM 2013), 20–12 June, 2013,
Seattle, Washington, USA. http://kar.kent.ac.uk/33611/

Kalibera’s paper as code: https://github.com/softdevteam/libkalibera

https://easyperf.net/blog/2019/12/30/Comparing-performance-measurements
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
Erik van der Kouwe et al. (2018) Benchmarking Crimes: An Emerging Threat in Systems

Security, https://arxiv.org/abs/1801.02381

feedback 55 / 55

http://kar.kent.ac.uk/33611/
https://github.com/softdevteam/libkalibera
https://easyperf.net/blog/2019/12/30/Comparing-performance-measurements
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
https://arxiv.org/abs/1801.02381
https://gitlab.fel.cvut.cz/esw/esw.pages.fel.cvut.cz/-/issues/new?issue[title]=Lecture benchmarking, slide 55 (References)&issue[description]=Insert your question/comment here.

	Benchmarking
	Energy
	Memory consumption

	Measuring and summarizing execution time
	Timestamping
	Benchmark design
	Summarizing benchmark results
	Repeating iterations
	Repeating executions and compilation
	Multi-level repetition

	Measuring speedup

