
David Šišlák
david.sislak@fel.cvut.cz

Effective Software

Lecture 10: JVM - Memory Analysis, Data Structures, Collections for Performance

[1] Oaks, S.: Java Performance: 2nd Edition. O'Reilly, USA 2020.
[2] JVM source code - http://openjdk.java.net
[3] Hylock, R.: Large-Scale Memory Efficient Java Primitive Collections. Journal of Software, March 2016.

mailto:sislakd@fel.cvut.cz
http://openjdk.java.net/

4th May 2023 ESW – Lecture 10 3

Outline

» Memory analysis
• Static memory analysis

– Shallow vs. retained size
• Dynamic memory analysis

» Data structures
• Objects, Arrays
• Auto-boxing, Unboxing

» Memory usage efficiency
• Collections for performance
• Collection resizing

4th May 2023 ESW – Lecture 10 4

JVM Performance Factors and Memory Analysis

» application performance factors
• total runtime

– algorithms (complexity, instructions, synchronization)
– memory management (garbage collection) overhead
– data structures (speed of data access, cache efficiency, GC pressure)

• memory consumption
– data structures (memory usage efficiency)

» memory analysis
• static memory analysis

– analyze memory usage at given moment
– suitable for data structure efficacy analysis, inspect content

• dynamic memory analysis
– analyze dynamic changes over time
– suitable for object allocation analysis and memory leak identification

4th May 2023 ESW – Lecture 10 5

Static Memory Analysis – Object Histogram

» analyze histogram of objects – imply global safepoint (stop the world)
• jmap -histo:live {PID}

4th May 2023 ESW – Lecture 10 6

Static Memory Analysis – Heap Dump

» capture heap dump – exported during global safepoint (stop the world)
• -XX:+HeapDumpOnOutOfMemoryError
• jmap -dump:live,format=b,file={name}.hprof {PID}
• visualvm, yourkit, …

» analyze heap dump – visualvm, yourkit, ...

4th May 2023 ESW – Lecture 10 7

Shallow vs. Retained Size

» shallow size
• memory allocated to store object itself

» retained size
• quantity of memory this object preserves from GC clean-up

– amount of memory freed if the object is GCed
• own shallow size + shallow size of all objects directly or indirectly

accessible ONLY from this object

4th May 2023 ESW – Lecture 10 8

Static Analysis Advanced Inspections

» wasting memory – memory doesn’t keep any useful content
• duplicate strings

– share string instances via pooling or intern()
• duplicate objects – same field contents

– share them, lazy creation, non-permanent usage
• zero length arrays

– unnecessary load for GC
– use per-class empty array singleton (e.g., via static field in the

class)
• null fields - objects having a lot of ‘null’ fields

– use subclasses for rarely assigned fields
• sparse arrays – big number of ‘null’, zero or same elements

– use alternate data structures (e.g., maps or refactor algorithms)
• inefficient data structure – large overhead of useless content

– use different data structures

4th May 2023 ESW – Lecture 10 9

Static Analysis Advanced Inspections

» memory leak – objects are no longer used but there are still references to
them
• object retained from inner non-static class back reference

– implicit back reference from inner class instance (even
anonymous), e.g., used for callback objects

– minimize usage of non-static inner class instances
» performance – speed of data read / write

• hash tables with non-uniformly distributed hash codes
– degraded performance due to hash collisions
– use better hashCode implementation

4th May 2023 ESW – Lecture 10 10

Dynamic Memory Analysis – GC Telemetry

» analyze GC telemetry – e.g., visualvm with VisualGC plugin
• usage of Eden space in time
• GC collections and their duration
• not affecting performance of monitored application

4th May 2023 ESW – Lecture 10 11

Dynamic Memory Analysis – Heap Dumps

» compare heap dumps
• difference in object count and size in various application state
• dumps with all objects (not just live) can help analyze object allocations if

there is no GC run in between
• each heap dump requires global safepoint (time depends on the heap size)

4th May 2023 ESW – Lecture 10 12

Dynamic Memory Analysis – Allocation Tracking

» allocation tracking - memory profiler
• track every n-th object allocation (trade-off between precision and speed)
• affect performance of profiled application, injects traceObjAlloc byte code

– introduce a lot of byte code + consume memory
– decreases possibility of JIT optimizations

4th May 2023 ESW – Lecture 10 13

Dynamic Memory Analysis – Allocation Tracking

» allocation tracking – flight recording using jmc – no byte code instrumentation
• identify large object allocations outside TLAB (thread local allocation buffer)

4th May 2023 ESW – Lecture 10 14

Dynamic Memory Analysis – Allocation Tracking

» allocation tracking – flight recording using jmc – no byte code instrumentation
• identify large object allocations outside TLAB (thread local allocation buffer)

4th May 2023 ESW – Lecture 10 15

Dynamic Memory Analysis – Allocation Tracking

» allocation tracking – flight recording using jmc – no byte code instrumentation
• identify large object allocations outside TLAB (thread local allocation buffer)

4th May 2023 ESW – Lecture 10 16

Data Structures – Primitives and Objects

» primitives: boolean(1), byte(1), char(2), int(4), long(8), float(4), double(8)
• without implicit allocation
• stored in variables or operand stack in JVM frame

» objects (object header structure overhead) allocated on the heap
• every object is descendant of Object by default

– methods – clone(), equals, getClass(), hashCode(), wait(…), notify (…),
finalize()

• objects for primitives: Boolean, Byte, Character, Integer, Long, Float,
Double; can be null

• objects with multiple fields use type group alignment and padding in the
following order (in the same type group respecting declaration order):
– longs and doubles (8B)
– ints and floats (4B)
– shorts and chars (2B)
– bytes and booleans
– references (4B / 8B)

Object structure (64-bit JVM):
- header 12 or 16 Bytes
- object data super class first

8B - mark word
4B / 8B – Klass ref.

… object data

4th May 2023 ESW – Lecture 10 17

Data Structures – Object Example 64-bit <32GB Heap

Object structure (64-bit JVM) using compressed OOP:
- object size 80 Bytes

mark word
Klass ref.

long1
int1

double1
long2

double2
float1 int2
float2 char1 short1

char2 short2 bo1 by1 bo2 by2
object1 ref. object2 ref.

0x40:

0x00:

0x10:

0x20:

0x30:

4th May 2023 ESW – Lecture 10 18

Data Structures – Object Example 64-bit >=32GB Heap

Object structure (64-bit JVM) using standard OOP:
- object size 96 Bytes (+20% vs. previous)

mark word
Klass ref.

long1
double1

long2
double2

int1 float1
int2

char2 short2char1 short1
bo1 by1 bo2 by2

object1 ref.
object2 ref.

0x40:

0x00:

0x10:

0x20:

0x30:
float2

empty padding

0x50:

4th May 2023 ESW – Lecture 10 19

Data Structures – Arrays

» single-dimension arrays
• special data structure which store several items of the same type in

linear order; have the defined limit
• JAVA automatically check limitations
• allocated on the heap
• primitives – keep primitive values stored directly
• objects – keep references to objects (4B or 8B references)

» multi-dimensional arrays
• arrays of arrays - ragged array

(non-uniform sub-level lengths)
• slower access due to dereferencing (multiple

memory read operations) and multi-index
bound checks

• consider flatten array

Array object structure (64-bit JVM):
- header 16 or 20 Bytes
- sequence of array values

8B - mark word
4B / 8B – Klass ref.

sequence of values
4B – array length

4th May 2023 ESW – Lecture 10 20

Memory Efficiency – Objects for Primitives

» memory efficiency – 100% efficiency means zero overhead

» correlates with cache efficacy
• cache line – read always consecutive 64 B of memory

» data locality further speed-up processing utilizing already cached data

useful _ content _ size
retained _ size

*100 %[]

Object Useful size Retained size
(Efficiency)
<32GB heap

Retained size
(Efficiency)
>=32GB heap

Boolean 1 bit 16 B (0.78 %) 24 B (0.52 %)

Byte 1 B 16 B (6.25 %) 24 B (4.17 %)

Short, Character 2 B 16 B (12.50 %) 24 B (8.34 %)

Integer, Float 4 B 16 B (25.00 %) 24 B (16.67 %)

Long, Double 8 B 24 B (33.34 %) 24 B (33.34 %)

4th May 2023 ESW – Lecture 10 21

Objects for Primitives

» auto boxing and un-boxing during assignment and parameter passing
• valueOf({primitive}) and {primitve}Value() methods

» all objects for primitives are immutable (final values)
» beware of inefficiencies caused by auto boxing and un-boxing

4th May 2023 ESW – Lecture 10 22

Conversion Inefficiencies - Example

» count word histogram

4th May 2023 ESW – Lecture 10 ? 23

Conversion Issues - Example

» what is the output? and what is the output for i=2000 and j=2000 ?

4th May 2023 ESW – Lecture 10 24

Conversion Issues - Example

» what is the output? and what is the output for i=2000 and j=2000 ?
true true
true false
true true

Note: after serialization, the second is always false

4th May 2023 ESW – Lecture 10 25

Objects for Primitives – Identity Semantics

» identity semantics using cache for valueOf({primitive})
• Short, Integer, Long – caches <-128;+127>
• Byte – caches all values
• Character – caches <0;+127>

» not working for objects created by constructor (e.g., new Integer(1))

4th May 2023 ESW – Lecture 10 26

Memory Efficiency – Java Collections

» LinkedList<E>
• uses Node<E> object with bi-directional links

» ArrayList<E>
• backend elementData array with references to objects

» HashMap<K,V>
• backend hash table of Node<K,V> with cached hashCode and linked

collisions

Note: Measured for 1 million of elements in Collections and Map

Object Useful size Retained size
(Efficiency)
<32GB heap

Retained size
(Efficiency)
>=32GB heap

LinkedList<Integer> 4 MiB 34.33 MiB (11.65 %) 47.26 MiB (8.46 %)

ArrayList<Integer> 4 MiB 17.73 MiB (22.56 %) 25.72 MiB (15.55 %)

HashMap<Integer,Double> 12 MiB 70.19 MiB (17.10 %) 87.67 MiB (13.69 %)

4th May 2023 ESW – Lecture 10 27

Collections for Performance

» Trove – Lesser GNU Public License (LGPL)
» FastUtil – Apache License 2.0

» collections for performance
• type-specific maps, sets, lists and queues

– remove overheads related to auto-boxing and un-boxing
• small memory footprint

– much better caching
– sequential access is very fast

• fast access and insertion
• use open addressing hashing in Maps instead of chaining approach
• support big collections (>231 elements) in FastUtil
• support custom hashing strategies in Trove

4th May 2023 ESW – Lecture 10 28

Open Addressing Hash Table

» eliminates the need for Map.Entry<K,V> wrapper supporting chaining
• typed keys & values arrays
• state byte array – FREE, FULL, REMOVED (Trove, total 3 arrays)
• special 0/null key tracking + default return value for empty (FastUtil,

total 2 arrays)
» smaller load factor implies less conflicts (Trove 0.5, FastUtil 0.75)
» collision resolution scheme

• linear probing (FastUtil) – better cache utilization due to data locality
• double hash probing (Trove) – less conflicts

– h2 cannot be 0
» complex deletion to keep conflict searching consistent

• shift last collision element instead of removed (FastUtil)
• keep removed elements – used by later puts (Trove)

» usage of prime number size of hash table reduce hashing collisions (Trove)
» usage of power of two size of hash table leads to fast bit operations (FastUtil)

h i,k() = h1 k()+ i ⋅h2 k()()mod T

4th May 2023 ESW – Lecture 10 29

Memory Efficiency – Collections for Performance

Note: 1 million of elements stored

Object Useful size Retained size
(Efficiency)
<32GB heap

Retained size
(Efficiency)
>=32GB heap

LinkedList<Integer> 4 MiB 34.33 MiB (11.65 %) 47.26 MiB (8.46 %)

TIntLinkedList (Trove) 4 MiB 20.60 MiB (19.42 %) 24.54 MiB (13.54 %)

ArrayList<Integer> 4 MiB 17.73 MiB (22.56 %) 25.72 MiB (15.55 %)

TIntArrayList (Trove) 4 MiB ~4.00 MiB (~100.00 %) ~4.00 MiB (~100.00%)

IntArrayList (FastUtil) 4 MiB ~4.00 MiB (~100.00 %) ~4.00 MiB (~100.00%)

HashMap<Integer,Double> 12 MiB 70.19 MiB (17.10 %) 87.67 MiB (13.69 %)

TIntDoubleHashMap (Trove) 12 MiB 27.85 MiB (43.09 %) 27.85 MiB (43.09 %)

Int2DoubleOpenHashMap
(FastUtil)

12 MiB 25.17 MiB (47.68 %) 25.17 MiB (47.68 %)

4th May 2023 ESW – Lecture 10 30

Collection Resizing – Default Expected Capacity

» run-time inefficiencies caused by collection resizing
• explicitly specify expected collection capacity

» ArrayList
• shared static default empty backend array
• backend array default capacity 10 (allocated during first add)
• grow implies copy of all previous elements - strategy +~50%
• no automatic shrinking, manual using trimToSize

» TIntArrayList (Trove)
• backend array default capacity 10 (allocated immediately)
• grow implies copy of all previous elements - strategy *2
• no automatic shrinking, manual using trimToSize

» IntArrayList (FastUtil)
• backend array default capacity 16 (allocated immediately)
• grow implies copy of all previous elements - strategy *2
• no automatic shrinking, manual using trim

4th May 2023 ESW – Lecture 10 31

Collection Resizing – Default Expected Capacity

» HashMap
• hash table initialized with the first element
• default hash table size 16 (default load factor 0.75)

– custom capacity rounded to power of two
• grow implies re-hashing (iteration + puts) of all previous elements

– strategy *2
• hash table shrinking not supported at all

» TIntDoubleHashMap (Trove)
• default hash table size 23 (default load factor 0.5)

– custom capacity adjusted to nearest bigger prime number
• grow implies re-hashing (iteration + puts) of all previous elements

– strategy nearest bigger prime number for size * 2
• auto compaction after certain number of removals

– nearest bigger prime number for the currently stored elements
– can be temporarily disabled if you are planning to do a lot of

removals

4th May 2023 ESW – Lecture 10 32

Collection Resizing – Default Expected Capacity

» Int2DoubleOpenHashMap (FastUtil)
• backend arrays allocated immediately
• default hash table size 16 (default load factor 0.75)

– custom capacity rounded to power of two
• grow implies re-hashing (iteration + puts) of all previous elements

– strategy *2
• auto shrinking after remove if used less than ¼ - strategy :2

– not shrinking under minimum hash table size 16

» further optimizations possible
• use stubs for no/one element collections when your application

contains a lot of collections

