Effective Software

Lecture 9: Non-blocking 1/0, C10K, efficient networking, threads

David Sislak
david.sislak@fel.cvut.cz

[1] Tanenbaum, A. S., Wetherall, D. J.: Computer Networks. Pearson, 2011.
[2] Kegel, D.: The C10K problem. http://www.kegel.com/c10k.html
[3] Hitchens, R.: Java NIO. O’Reilly, 2002.

[4] Pressler, R., Bateman, A.: JEP 436 - Virtual Threads (second preview)

mailto:sislakd@fel.cvut.cz
http://www.kegel.com/c10k.html

» Network communication
e OSI model

» C10k problem
 Thread-per-request vs. event-based approach
» Non-blocking I/O
e Select
* Poll
* Epoll
 Java non-blocking 1/O
- Native memory buffer
- NIO
» Threads
* Thread pools
e Virtual threads

22t April 2024 ESW — Lecture 9

Network Communication — OSI Model

i 7 — Application) (Software App Layer FTP,ATTP,)
Interface to end user. Interaction Directory services, email, network WWW, SMTP,
directly with software application. management, file transfer, web pages, | TELNET, DNS,

9) \database access. p_IFIF. NG g

a . Y~ W)

6 — Presentation Syntax/Semantics Layer (" ASCIl JPEG.)
Formats data to be “presented” || Data translation, compression, MPEG. GIF
between application-layer entities. || @ncryption/decryption, formatting. MIDI
e FA \. v
[5 — Sessi "\ (Application Session M t N)
ession pplication Session Managemen
Manages connections between local Session establishment/teardown, file SQL, RPC,
and remote application. transfer checkpoints, interactive login. NFS

\ L N =,

4 4 -~ Transport Y r & @nd4o£nd Transport Services 4 \\
Ensures integrity of data £ || Data segmentation, reliability, TCP, UDP,

transmission. 2 || multiplexing, connection-oriented, flow | SPX, AppleTalk

\ J_?)\control, sequencing, error checking. _ /)

[3-Network | . |(Routing (1P, P, IcMP,).
Determines how data gets % || Packets, subnetting, logical IP ARP. PING.
from one host to another. & ||addressing, path determination, Tia c'er vl el

e J_) \connectionless. \. /)

[2-DataLink - (Switching (Switches,)

Defines format of data on the 1S Frame traffic control, CRC error Bridges, Frames,
network. g checking, encapsulates packets, MAC PPP/SLIP,

9))\addresses. j__Cthemet g
(1-Physical |)(Cabling/Network Interface Binary)
Transmits raw bit stream 2 Manages physical connections, transmission, bit
22t April 202| over physical medium. @ ||interpretation of bit stream into rates, voltage 4

L))\electrical signals f . e)

Network Communication — Introduction

app app app app TCP UDP

FTP 20.21|DNS 53
! !] ! SSH 22|BooTPS/IDHCP | 67
oot | oot | ot | ! por Telnet 23[TFTP 69
. SMTP 25[SNMP 161

DNS 53

TCP or UDP HTTP 30

Packet POP3 110

T Data port# | Data | INTP 123

. IMAP4 143

» ports — 16-bit number HTTPS 443

» [IPv4 — 32-bit address
» [IPv6 — 128-bit address

* 48-bit or more routing prefix, 16-bit or less subnet id, 64-bit interface
http://[1fff:0:a88:85a3::ac1f]:8080/index.html

>

v

TCP/UDP connection identification — quad — src IP, src port, dst IP, dst port

22t April 2024 ESW — Lecture 9 5

Network Communication — HTTP Example

Sender (Client in Building A)

Receiver (Server in Building B)

Application Application

Layer HTTP | Request \ Layer HTTP | Request \
e TCP | HTTP | Request ¥ TR TCP | HTTP | Request /

Layer \ Layer \
Network IP / Network IP J

Layer Y28 809550 T | T | Reguest) Layer rohth s i A)
Data Link Ethernet IP Data Link Ethernet IP

Layer |[00-0C-00-33-3A-08|128.192.95.30| ' =" | HTTP | Request Layer ||00-0C-00-33-3A-A0[128.192.95.30| CP | HTTP | Request
e =ik oL 1 L. j e et AL L.

Layer Layer

/
Gateway (Router in Building A)
Network IP
Layer }' 128.192.05.30, < | 1T | Request \‘
\

Data Link Ethernet IP Ethernet IP

Layer AOO-OC-OO-33~3A-OB128.192.95.30TCP HTTP| Request| | 150 0c-00-33-3A-AF [128.192.05.30 " | T TP | Request
Physical iy LA J R —dik L3 L.

Layer

I

Gateway (Router in Building B)

Network IP
Layer {% 128.992:05.30] = | AT | Reqiest _\

DaLt:yI;Irnk Ethernet IP TCP| HTTP | Request Ethernet P

TCP|HTTP | Request

00-0C-00-33-3A-AF |128.192.95.30 00-0C-00-33-3A-A0(128.192.95.30

e Yo —dd EIL_J L i ML} L
Layer

C10k Problem

» handling a huge number of clients (10 000s) at the same time (late 90s)
* concurrent connections by one server requiring efficient scheduling
* not related to requests per second
» sometime known as C1M or C10M problem (nowadays)
» approach
» thread-per-request servers (Apache)
— each connection handled by own thread/process (pooled but limited)
- connection operations usually use blocking operations
- thread scheduling doesn’t scale (+cost for thread context switching)
- thread scheduling used as packet scheduling
» event-driven 1/0 servers (Nginx)
- do packet scheduling yourself — single/multi-threaded event loop
- using non-blocking (asynchronous) operations with event interceptors
- multi-core scalability with controlled number of worker threads
- reuse thread-based data structures, avoid locks (atomics, non-blocking)

22t April 2024 ESW — Lecture 9 7

Non-Blocking 1/O Approach

» interrupts
* hardware interrupts in kernel mode
» polling
* looping to regularly check status (readiness for 1/0)
» wastes CPU cycles
» signals
* OS generated signals on I/O readiness
* might leave state inconsistent in the process inconsistent
» callbacks
e pointer to handler function
» stack deepening issue (callback issuing 1/0)
» event-based
e select
e poll
e epoll

22t April 2024 ESW — Lecture 9 8

Event-Based 1/0 - select

» select
» defined in POSIX (Portable Operating System Interface)
 originally used for blocking 1/0

e passed lists of descriptors cannot be reused in subsequent calls as
they are modified by the system call
* not scalable — limited descriptors + iterate over to find the event
int
select(int nfds, fd_set *restrict readfds, fd_set *restrict writefds, fd_set *restrict errorfds,
struct timeval *restrict timeout);

void
FD_CLR(fd, fd_set *fdset);

void
FD_COPY(fd_set *fdset_orig, fd_set *fdset_copy);

int
FD_ISSET(fd, fd_set *fdset);

void
FD_SET(fd, fd_set *fdset);

void
FD_ZERO(fd_set *fdset);
22th April 2024 ES ’

Event-Based 1/O - poll

» poll
* polled descriptors not limited
e descriptors can be reused
* better but you still need iterate over descriptors to find events

int
poll(struct pollfd fds[], nfds_t nfds, int timeout);

struct pollfd {
int fd; /* file descriptor */
short events; /* events to look for */
short revents; /* events returned */

s

22t April 2024 ESW — Lecture 9 10

Event-Based 1/O - epoll

» epoll
* Linux only (e.g. Windows has IOCP — 10 Completion Ports)
* scalable
* monitored events can be modified while polling (via syscall)

* returns triggered events directly
» API

* epoll_create & epoll_createl —initialize epoll instance (kernel structure)
* epoll_ctl - add/modify/remove descriptors to epoll instance
* epoll_wait — wait for events up to timeout
» modes
* level triggered — wait always returns if event is available
» edge triggered (EPOLLET) — readiness returned upon incoming event only
(you have to process all pending events before next wait !)
» events
e EPOLLIN, EPOLLOUT, EPOLLPRI
e EPOLLRDHUP, EPOLLHUP
* EPOLLERR

Epoll Usage

epoll structure:

typedef union epoll data
{
void *ptr;
int fd;
__uint32 t u32;
__uint64 t u64;
} epoll data t;

struct epoll event

{
__uint32_t events; /* Epoll events */
epoll data t data; /* User data variable */
i
initialization:

int epfd = epoll createl(0);
struct epoll event ev;
int client sock;

ev.events = EPOLLIN | EPOLLPRI | EPOLLERR | EPOLLHUP;
ev.data.fd = client_ sock;

int res = epoll ctl(epfd, EPOLL CTL ADD, client sock, &ev);

22t April 2024 ESW — Lecture 9 12

Epoll Event Loop

while (1) {
// wait for something to do...
int nfds = epoll wait(epfd, events,
MAX EPOLL EVENTS PER RUN,
EPOLL RUN TIMEOUT);
if (nfds < 0) die("Error in epoll wait!");

// for each ready socket
for(int i = 0; i < nfds; i++) {
int fd = events[i].data.fd;

handle io on_ socket(fd);

}

22t April 2024 ESW — Lecture 9 13

JAVA Blocking Networking — TCP Client

» Socket
* client end-point of network TCP/IP connection
* is bound to particular destination IP and port
e each TCP/IP connection is uniquely identified by its two end-points
* provides input/output streams

try (

) {

Socket echoSocket = new Socket(host: "Localhost"™, port: 7);

PrintWriter out = new PrintWriter(echoSocket.getOutputStream(), autoFlush: true);
BufferedReader in = new BufferedReader(new InputStreamReader(echoSocket.getInputStream()));
BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in))

String userInput;
while ((userInput = stdIn.readLine()) != null) {

out.printin(userInput);
System.out.println("echo: " + in.readlLine());

22t April 2024 ESW — Lecture 9 16

JAVA Blocking Networking — TCP Server

» ServerSocket
* server socket representing listening TCP/IP end-point

* within constructor you specify the port, and optionally IP where it
should be bound

» wait for establishing connection using method Socket accept()

22t April 2024 ESW — Lecture 9

17

JAVA Blocking Networking — TCP Server - Example

thread-per-request server example — each handler in own thread with blocking 1/0

ExecutorService clientRunner = Executors.newCachedThreadPool();
try (

) {
while (true) {
final Socket s = serverSocket.accept();
clientRunner.execute(() —> {
try (

ServerSocket serverSocket = new ServerSocket(port: 7)

BufferedReader in = new BufferedReader(new InputStreamReader(s.getInputStream()));
PrintWriter out = new PrintWriter(s.getOutputStream(), autoFlush: true)
) {
String line;
while (s.isConnected()) {
if ((line = in.readLine()) != null) {
out.println(line);
}
}
} catch (IOException e) {
e.printStackTrace();
}

3
}
} catch (Exception e) {
e.printStackTrace();
} finally {
clientRunner.shutdownNow();

}
22t April 2024 ESW — Lecture 9 18

JAVA Blocking Networking - UDP

» DatagramPacket
* independent, self-contained message sent over the network
* like network packet
- InetAddress address, int port — destination
- byte data[], int length, int offset
— SocketAddress sa — sender
» DatagramSocket
* sending or receiving point for a packet delivery service
e can be bound to any available port (using default constructor)

* connect(InetAddress,int) — can sent or receive packets only specified
host, if not set in DatagramPacket automatically fill

* send(DatagramPacket p), receive(DatagramPacket p) — blocking IO
» MulticastSocket
* additional capabilities for joining/leaving multicast groups, loopback
* multicast IP (IGMP — Internet Group Management Protocol)
224.0.0.0 —239.255.255.255

22t April 2024 ESW — Lecture 9 19

JAVA Non-blocking Networking - NIO

» scalable I/0 — asynchronous I/O requests and polling

» high-speed block-oriented binary and character I/0O working — including
mapping files to the memory, using channels and selectors

» Channelis a block device working with Buffers

Channel

IR
e

22t April 2024 ESW — Lecture 9 20

JAVA - NIO - Buffer

» java.nio.Buffer
* linear, finite sequence of elements of a specific primitive type

- ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer, MappedByteBuffer {FileChannel.map(...)}

* not thread safe, multi mode for the same buffer (both read & write)
» key properties — 0 <= mark <= position <= limit <= capacity
— capacity — numbers of elements, never changing !
- limit —index of the first element that should not be read or written
- position —index of the next element to be read or written
- mark — index to which its position is set after reset()
e clear() — position=0, limit=capacity => ready for channel read (put)
* flip() — limit=position, position=0 => ready for channel write (get)
* rewind() — limit unchanged, position=0 => ready for re-reading
* mark() — mark = position
* reset() — position=mark

22t April 2024 ESW — Lecture 9 21

JAVA - NIO - Buffer

Buffer - Write Mode Buffer - Read Mode

» write mode — channel.read(buf); buf.put(...);
» read mode — channel.write(buf); ... buf.get();

22t April 2024 ESW — Lecture 9 22

JAVA - NIO - Buffer

» java.nio.Buffer
e isReadOnly() — can be read-only
* hasArray() —is backed by an accessible array (array())
e equals(), compareTo() — compare remainder sequence

e can be allocated to native memory (see next slide)

e typical usage
1. Write data into the Buffer
2. Callpuffer.flip()

3. Read data out of the Buffer

4. Callpuffer.clear () or buffer.compact ()

Note: compact() — bytes between position and limit are copied to the
beginning of the buffer and prepare for writing again

22t April 2024 ESW — Lecture 9 23

JVM - Memory Layout — Native Memory

ac on Heap Heap

(intern Strings)

Thread Other native memory Metaspace Young Generation oc';deﬁ‘ ;ﬁ;‘t‘gﬁd
Program Counter ——
J N I Code Cache
Stack Native Stack

native
NIO

buffers
I/ ,

Method Area

aoedg uap3
saoedg JOAIAING

4

(VARV}

Minor Major
Garbage Garbage
Collection Collection

Frame ogerand
tack

Local Variables $ Cirrent Class

Return Value [[[D:D]]]II Constant Pool Class Data
Reference N -
e é

Run-Time Constant Pool

~
~e
-
-

string constants

numeric constants

class references

Method
Code

field references

method references

name and type

invoke dynamic

native memory

22t April 2024 ESW — Lecture 9 24

JVM - NIO - Direct Buffers

» ByteBuffer.allocateDirect(...)
» stored out of JAVA heap in native memory
» allow native code and Java code to share data without copying
» useful for file and socket
- the same memory is passed to kernel during calls
» multiple buffers can share native memory
» slice()/duplicate() —independent position, limit, mark, shared content
* asReadOnlyBuffer() — read only view of shared content
» tuning/tracking
e -XX:MaxDirectMemorySize=N (default unlimited)
e -XX:NativeMemoryTracking=off| summary|detail
* -XX:+PrintNMTStatistics

Note: usage of heap buffers implies content copy out/in Java heap space due
to possible relocations by GC

22t April 2024 ESW — Lecture 9 25

JAVA Networking - NIO — Channel, Selector

Thread

l Channel l Channel l Channel l

» one thread works with multiple channels at the same time
* epoll-based if OS support epoll
» Channel — cover UDP+TCP network IO, file 10
* FileChannel — from Input/OutputStream or RandomAccessFile

* DatagramChannel
 MulticastChannel
 SocketChannel

 ServerSocketChannel
22t April 2024 ESW — Lecture 9 26

JAVA — NIO - Channel

» Channel
* read/write at the same time (streams are only one-way)
* always read/write from/to a buffer

» FileChannel
* only blocking
* support —direct buffers, mapped files, locking
* bulk transfers between channels
- no copy at all, direct transfer e.g. to socket
- transferFrom(sourceChannel, int pos, int count)

- transferTo(int pos, int count, dstChannel)

22t April 2024 ESW — Lecture 9 27

JAVA — NIO - Channel

» SocketChannel — client end-point of TCP/IP
* can be configured as non-blocking before connecting
* SocketChannel socket.getChannel();
* SocketChannel SocketChannel.open();
e sch.connect(...)

e write(...) and read(...) may return without having written/read
anything for non-blocking channel

» ServerSocketChannel — server end-point of TCP/IP
* can be configured as non-blocking
e can be created directly using open() or from ServerSocket
* accept() — returns SocketChannel in the same mode

22t April 2024 ESW — Lecture 9 28

JAVA — NIO - Selector

» Selector
» Selector Selector.open();
* only channels in non-blocking mode can be registered
channel.configureBlocking(false);
SelectionKey channel.register(selector, SelectionKey.OP_READ);
* FileChannel doesn’t support non-blocking mode

» SelectionKey — events you can listen for (multiple can be combined)
e OP_CONNECT
e OP_ACCEPT
« OP_READ
« OP_WRITE

» events are filled by channel which is ready with operation

22t April 2024 ESW — Lecture 9 29

JAVA — NIO - Selector

» SelectionKey — returned from register method
* interest set — your configured ops
* ready set — which ops are ready, sk.isReadable(), sk.isWritable(), ...
e channel
* selector

e optional attached object — sk.attach(Object obj);
Object sk.attachment()

SelectionKey channel.register(selector, ops, attachmentObj);

22t April 2024 ESW — Lecture 9 30

JAVA — NIO - Selector

» Selector with registered one or more channels
* int select() — blocks until at least one channel is ready
* int select(long timeout) — with timeout milliseconds
* int selectNow() — doesn’t block at all, returns immediately

return the number of channels which are ready from the last call
Set<SelectionKey> selector.selectedKeys();

« wakeUp() — different thread can “wake up” thread blocked in select()
* close() —invalidates selector, channels are not closed

22t April 2024 ESW — Lecture 9 31

JAVA - NIO Server — Using Multiple Reactors

NIOReactors NIOAcceptor

Handler

NIOClientHandlers

sy D

task

‘
Worker thread

22t April 2024 ESW — Lecture 9 32

ThreadPool

» processes vs. threads
* both support concurrent execution
* one process has one or multiple threads
e threads share the same address space (data and code)
* |ocal variables, exception handling, debugging and profiling
* context switching between threads is usually less expensive

* thread inter-communication is relatively efficient using shared
memory

» JVM
* athread executes sequence of code with own stack with frames
t.getStackTrace()
* own local variables
 own method parameters
» thread creation by
e subclass of java.lang.Thread

* implementation of java.lang.Runnable
22t April 2024 ESW — Lecture 9 40

JAVA Thread Pool - ExecutorService

» concept of thread pooling
» suitable for execution of large number of asynchronous tasks
* e.g., processing of requests in server
» reduce overhead with Thread creation for each task, context switching
» interface - java.util.concurrent.ExecutorService
* shutdown(), shutdownNow(), awaitTermination
e execute(Runnabler)
e Future<?>submit(Runnable r), Future<T> submit(Callable<T> c)
» java.util.concurrent.Future<T>
* boolean cancel(boolean maylnterruptifRunning)
e jisCancelled(), isDone()
* Vget(), V get(long timeout, TimeUnit unit)
» java.util.concurrent.Executors (optionally with ThreadFactory)
 newsSingleThreadExecutor()
 newFixedThreadPool(nThreads)

 newCachedThreadPool() — default 60 seconds keep-alive
22t April 2024 ESW — Lecture 9 41

JAVA Virtual Threads - Introduction

» lightweight implementation of Java thread

» available from Java 21

preview feature since Java 19 (attribute --enable-preview)

» standard thread

thin wrapper around OS-managed platform thread

basic unit of OS scheduling

creation/removal is expensive and resource-heavy operation
fixed thread stack size -> StackOverflowException

doesn’t scale

» alternatives

async/await — reactive-style programming (e.g. Kotlin)
- asynchronous operations with callback
issues with readable stack-traces, debugging and observability

* complex workflow for sequential composition, iteration, try-catch bIocks
22t April 2024 ESW — Lecture 9

JAVA Virtual Threads - Details

» virtual thread
* reduce effort of writing high-throughput concurrent applications
* thread-per-request approach with almost optimal hardware utilization
* compatible with Thread API
e support debugging and profiling with existing tools
e stack frames in heap
- stack size dynamically resizes as needed — expand and shrink
e OSstill manages only platform threads
 virtual thread is mounted to carrier thread for execution
— copy stack frames from heap to stack of carrier thread
- unmounted when blocked for 10, lock or other resource
- mounting/unmounting is invisible from Java code
- thread dump, stack trace do not include carrier thread frames
— carrier threads are from ForkJoinPool operating in FIFO mode
* using number of available logical CPU cores

22t April 2024 ESW — Lecture 9 43

JAVA Virtual Threads - Details

OS Thread

/ \ { ——————— \\
Platform Thread , |
| | Virtual Thread | |
| I
Virtual Thread | |
Mounted | |
Virtual Thread ~~ T~ P : Virtual Thread | |
I
| I
| I

| .
| Virtual Thread :

|

- y, B |

___:___/
|

|
Unmounted Blocked

Virtual Threads

(
Unmounted Ready | ,
: Virtual Thread

Virtual Threads ~— ~

Virtual Thread

S . . e e e e —

44

JAVA Virtual Threads - Details

» virtual thread API
* Thread::ofVirtual()
* implementation of the ordinary Thread
— Thread::currentThread() returns virtual thread, not carrier thread
- ThreadLocal, interruption, stack walking works the same way
- always daemon thread, Thread::setDaemon has no effect
- priority cannot be changed
e Executors.newVirtualThreadPerTaskExecutor()
— each task run in own VirtualThread
» scalability
* fast creation, small memory footprint
* execution efficiency is the same as for platform threads
* scale for 10-bound workloads (even for short-lived tasks)
- simplified design with thread-per-request
- suitable for server applications

* no additional value for CPU-bound workloads
22t April 2024 ESW — Lecture 9 45

JAVA Virtual Threads - Details

» example with 100k virtual threads

try (var executor = Executors.newVirtualThreadPerTaskExecutor()) A{

IntStream.range(0, 100_000).forEach(i -> {

executor.submit(() -> {
Thread.sleep(Duration.ofSeconds(1));

return 1;

});
});
}.

» after warm-up takes about 1.1 seconds

» with Executors.newFixedThreadPool(1000) it takes about 1000 seconds

» drawbacks
* synchronized pins virtual thread to its carrier -> use RentrantLock

e execution of JNI pins as well
* release carrier only on blocking operation, no preemption !

22t April 2024 ESW — Lecture 9 46

