
David Šišlák
david.sislak@fel.cvut.cz

Effective Software

Lecture 9: Non-blocking I/O, C10K, efficient networking, threads

[1] Tanenbaum, A. S., Wetherall, D. J.: Computer Networks. Pearson, 2011.
[2] Kegel, D.: The C10K problem. http://www.kegel.com/c10k.html
[3] Hitchens, R.: Java NIO. O’Reilly, 2002.
[4] Pressler, R., Bateman, A.: JEP 436 - Virtual Threads (second preview)

mailto:sislakd@fel.cvut.cz
http://www.kegel.com/c10k.html

24th April 2023 ESW – Lecture 9 3

Outline

» Network communication
• OSI model

» C10k problem
• Thread-per-request vs. event-based approach

» Non-blocking I/O
• Select
• Poll
• Epoll
• Java non-blocking I/O

– Native memory buffer
– NIO

» Threads
• Thread pools
• Virtual threads

24th April 2023 ESW – Lecture 9 4

Network Communication – OSI Model

24th April 2023 ESW – Lecture 9 5

Network Communication – Introduction

» ports – 16-bit number
» IPv4 – 32-bit address
» IPv6 – 128-bit address

• 48-bit or more routing prefix, 16-bit or less subnet id, 64-bit interface
 http://[1fff:0:a88:85a3::ac1f]:8080/index.html

» TCP/UDP connection identification – quad – src IP, src port, dst IP, dst port

24th April 2023 ESW – Lecture 9 6

Network Communication – HTTP Example

24th April 2023 ESW – Lecture 9 7

C10k Problem

» handling a huge number of clients (10 000s) at the same time (late 90s)
• concurrent connections by one server requiring efficient scheduling
• not related to requests per second

» sometime known as C1M or C10M problem (nowadays)
» approach

• thread-per-request servers (Apache)
– each connection handled by own thread/process (pooled but limited)
– connection operations usually use blocking operations
– thread scheduling doesn’t scale (+cost for thread context switching)
– thread scheduling used as packet scheduling

• event-driven I/O servers (Nginx)
– do packet scheduling yourself – single/multi-threaded event loop
– using non-blocking (asynchronous) operations with event interceptors
– multi-core scalability with controlled number of worker threads
– reuse thread-based data structures, avoid locks (atomics, non-blocking)

24th April 2023 ESW – Lecture 9 8

Non-Blocking I/O Approach

» polling
• looping to regularly check status (readiness for I/O)
• wastes CPU cycles

» signals
• OS generated signals on I/O readiness
• might leave state inconsistent in the process inconsistent

» callbacks
• pointer to handler function
• stack deepening issue (callback issuing I/O)

» interrupts
• hardware interrupts in kernel mode

» event-based
• select
• poll
• epoll

24th April 2023 ESW – Lecture 9 9

Event-Based I/O - select

» select
• defined in POSIX (Portable Operating System Interface)
• originally used for blocking I/O
• passed lists of descriptors cannot be reused in subsequent calls as they

are modified by the system call
• not scalable – limited descriptors + iterate over to find the event

24th April 2023 ESW – Lecture 9 10

Event-Based I/O - poll

» poll
• polled descriptors not limited
• descriptors can be reused
• better but you still need iterate over descriptors to find events

24th April 2023 ESW – Lecture 9 11

» API
• epoll_create & epoll_create1 – initialize epoll instance (kernel structure)
• epoll_ctl – add/modify/remove descriptors to epoll instance
• epoll_wait – wait for events up to timeout

» modes
• level triggered – wait always returns if event is available
• edge triggered (EPOLLET) – readiness returned upon incoming event only

 (you have to process all pending events before next wait !)
» events

• EPOLLIN, EPOLLOUT, EPOLLPRI
• EPOLLRDHUP, EPOLLHUP
• EPOLLERR

Event-Based I/O - epoll

» epoll
• Linux only (e.g. Windows has IOCP – IO Completion Ports)
• scalable
• monitored events can be modified while polling (via syscall)
• returns triggered events directly

24th April 2023 ESW – Lecture 9 12

Epoll Usage

epoll structure:

initialization:

24th April 2023 ESW – Lecture 9 13

Epoll Event Loop

24th April 2023 ESW – Lecture 9 16

JAVA Networking – TCP Client

» Socket
• client end-point of network TCP/IP connection
• is bound to particular destination IP and port
• each TCP/IP connection is uniquely identified by its two end-points
• provides input/output streams

24th April 2023 ESW – Lecture 9 17

JAVA Networking – TCP Server

» ServerSocket
• special socket representing listening TCP/IP end-point
• within constructor you specify the port, and optionally IP where it

should be bound
• wait for establishing connection using method Socket accept()

24th April 2023 ESW – Lecture 9 18

JAVA Networking – TCP Server - Example

thread-per-request server example – each handler in own thread with blocking I/O

24th April 2023 ESW – Lecture 9 19

JAVA Networking - UDP

» DatagramPacket
• independent, self-contained message sent over the network
• like network packet

– InetAddress address, int port – destination
– byte data[], int length, int offset
– SocketAddress sa – sender

» DatagramSocket
• sending or receiving point for a packet delivery service
• can be bound to any available port (using default constructor)
• connect(InetAddress,int) – can sent or receive packets only specified

host, if not set in DatagramPacket automatically fill
• send(DatagramPacket p), receive(DatagramPacket p) – blocking IO

» MulticastSocket
• additional capabilities for joining/leaving multicast groups, loopback
• multicast IP (IGMP – Internet Group Management Protocol)

224.0.0.0 – 239.255.255.255

24th April 2023 ESW – Lecture 9 20

JAVA Networking - NIO

» scalable I/O – asynchronous I/O requests and polling
» high-speed block-oriented binary and character I/O working – including

mapping files to the memory, using channels and selectors

» Channel is a block device working with Buffers

24th April 2023 ESW – Lecture 9 21

JAVA – NIO - Buffer

» java.nio.Buffer
• linear, finite sequence of elements of a specific primitive type

– ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer, MappedByteBuffer {FileChannel.map(…)}

• not thread safe, multi mode for the same buffer (both read & write)
• key properties – 0 <= mark <= position <= limit <= capacity

– capacity – numbers of elements, never changing !
– limit – index of the first element that should not be read or written
– position – index of the next element to be read or written
– mark – index to which its position is set after reset()

• clear() – position=0, limit=capacity => ready for channel read (put)
• flip() – limit=position, position=0 => ready for channel write (get)
• rewind() – limit unchanged, position=0 => ready for re-reading
• mark() – mark = position
• reset() – position=mark

24th April 2023 ESW – Lecture 9 22

JAVA – NIO - Buffer

» write mode – channel.read(buf); buf.put(…);
» read mode – channel.write(buf); … buf.get();

24th April 2023 ESW – Lecture 9 23

JAVA – NIO - Buffer

» java.nio.Buffer
• isReadOnly() – can be read-only
• hasArray() – is backed by an accessible array (array())
• equals(), compareTo() – compare remainder sequence

• can be allocated to native memory (see next slide)

• typical usage

Note: compact() – bytes between position and limit are copied to the
beginning of the buffer and prepare for writing again

24th April 2023 ESW – Lecture 9 24

JVM – Memory Layout – Native Memory

native memory

JNI

native
NIO
buffers

24th April 2023 ESW – Lecture 9 25

JVM – NIO - Direct Buffers

» ByteBuffer.allocateDirect(…)
» stored out of JAVA heap in native memory
» allow native code and Java code to share data without copying

• useful for file and socket
– the same memory is passed to kernel during calls

» multiple buffers can share native memory
• slice()/duplicate() – independent position, limit, mark, shared content
• asReadOnlyBuffer() – read only view of shared content

» tuning/tracking
• -XX:MaxDirectMemorySize=N (default unlimited)
• -XX:NativeMemoryTracking=off|summary|detail
• -XX:+PrintNMTStatistics

Note: usage of heap buffers implies content copy out/in Java heap space due
to possible relocations by GC

24th April 2023 ESW – Lecture 9 26

JAVA Networking - NIO – Channel, Selector

» one thread works with multiple channels at the same time
• epoll-based if OS support epoll

» Channel – cover UDP+TCP network IO, file IO
• FileChannel – from Input/OutputStream or RandomAccessFile
• DatagramChannel
• MulticastChannel
• SocketChannel
• ServerSocketChannel

24th April 2023 ESW – Lecture 9 27

JAVA – NIO – Channel

» Channel
• read/write at the same time (streams are only one-way)
• always read/write from/to a buffer

» FileChannel
• only blocking
• support – direct buffers, mapped files, locking
• bulk transfers between channels

– no copy at all, direct transfer e.g. to socket
– transferFrom(sourceChannel, int pos, int count)
– transferTo(int pos, int count, dstChannel)

24th April 2023 ESW – Lecture 9 28

JAVA – NIO – Channel

» SocketChannel – client end-point of TCP/IP
• can be configured as non-blocking before connecting
• SocketChannel socket.getChannel();
• SocketChannel SocketChannel.open();
• sch.connect(…)

• write(…) and read(…) may return without having written/read
anything for non-blocking channel

» ServerSocketChannel – server end-point of TCP/IP
• can be configured as non-blocking
• can be created directly using open() or from ServerSocket
• accept() – returns SocketChannel in the same mode

24th April 2023 ESW – Lecture 9 29

JAVA – NIO – Selector

» Selector
• Selector Selector.open();
• only channels in non-blocking mode can be registered

channel.configureBlocking(false);
SelectionKey channel.register(selector, SelectionKey.OP_READ);

• FileChannel doesn’t support non-blocking mode

» SelectionKey – events you can listen for (multiple can be combined)
• OP_CONNECT
• OP_ACCEPT
• OP_READ
• OP_WRITE

» events are filled by channel which is ready with operation

24th April 2023 ESW – Lecture 9 30

JAVA – NIO – Selector

» SelectionKey – returned from register method
• interest set – your configured ops
• ready set – which ops are ready, sk.isReadable(), sk.isWritable(), …
• channel
• selector
• optional attached object – sk.attach(Object obj);

 Object sk.attachment()
SelectionKey channel.register(selector, ops, attachmentObj);

24th April 2023 ESW – Lecture 9 31

JAVA – NIO – Selector

» Selector with registered one or more channels
• int select() – blocks until at least one channel is ready
• int select(long timeout) – with timeout milliseconds
• int selectNow() – doesn’t block at all, returns immediately

 return the number of channels which are ready from the last call
 Set<SelectionKey> selector.selectedKeys();

• wakeUp() – different thread can “wake up” thread blocked in select()
• close() – invalidates selector, channels are not closed

24th April 2023 ESW – Lecture 9 32

JAVA – NIO Server – Using Multiple Reactors

ReactorsNIOReactors

Client

Client

Client

NIOAcceptor
Handler

NIOClientHandlersNIOClientHandlers

processread write

ThreadPool

Queued process
task

Worker thread

Worker thread

24th April 2023 ESW – Lecture 9 40

Threads

» processes vs. threads
• both support concurrent execution
• one process has one or multiple threads
• threads share the same address space (data and code)
• local variables, exception handling, debugging and profiling
• context switching between threads is usually less expensive
• thread inter-communication is relatively efficient using shared

memory
» JVM

• a thread executes sequence of code with own stack with frames
 t.getStackTrace()

• own local variables
• own method parameters

» thread creation by
• subclass of java.lang.Thread
• implementation of java.lang.Runnable

24th April 2023 ESW – Lecture 9 41

JAVA Thread Pool - ExecutorService

» concept of thread pooling
» suitable for execution of large number of asynchronous tasks

• e.g., processing of requests in server
» reduce overhead with Thread creation for each task, context switching
» interface - java.util.concurrent.ExecutorService

• shutdown(), shutdownNow(), awaitTermination
• execute(Runnable r)
• Future<?> submit(Runnable r), Future<T> submit(Callable<T> c)

» java.util.concurrent.Future<T>
• boolean cancel(boolean mayInterruptIfRunning)
• isCancelled(), isDone()
• V get(), V get(long timeout, TimeUnit unit)

» java.util.concurrent.Executors (optionally with ThreadFactory)
• newSingleThreadExecutor()
• newFixedThreadPool(nThreads)
• newCachedThreadPool() – default 60 seconds keep-alive

24th April 2023 ESW – Lecture 9 42

JAVA Virtual Threads - Introduction

» lightweight implementation of Java thread
» preview feature since Java 19 (attribute --enable-preview)

» standard thread
• thin wrapper around OS-managed platform thread
• basic unit of OS scheduling
• creation/removal is expensive and resource-heavy operation
• fixed thread stack size -> StackOverflowException
• doesn’t scale

» alternatives
• async – reactive-style programming

– asynchronous operations with callback
• issues with readable stack-traces, debugging and observability
• complex workflow for sequential composition, iteration, try-catch blocks

24th April 2023 ESW – Lecture 9 43

JAVA Virtual Threads - Details

» virtual thread
• reduce effort of writing high-throughput concurrent applications
• thread-per-request approach with almost optimal hardware utilization
• compatible with Thread API
• support debugging and profiling with existing tools
• stack frames in heap

– stack size dynamically resizes as needed – expand and shrink
• OS still manages only platform threads
• virtual thread is mounted to carrier thread for execution

– copy stack frames from heap to stack of carrier thread
– unmounted when blocked for IO, lock or other resource
– mounting/unmounting is invisible from Java code
– thread dump, stack trace do not include carrier thread frames
– carrier threads are from ForkJoinPool operating in FIFO mode

• using number of available logical CPU cores

24th April 2023 ESW – Lecture 9 44

JAVA Virtual Threads - Details

»

24th April 2023 ESW – Lecture 9 45

JAVA Virtual Threads - Details

» virtual thread API
• Thread::ofVirtual()
• implementation of the ordinary Thread

– Thread::currentThread() returns virtual thread, not carrier thread
– ThreadLocal, interruption, stack walking works the same way
– always daemon thread, Thread::setDaemon has no effect
– priority cannot be changed

• Executors.newVirtualThreadPerTaskExecutor()
– each task run in own VirtualThread

» scalability
• fast creation, small memory footprint
• execution efficiency is the same as for platform threads
• scale for IO-bound workloads (even for short-lived tasks)

– simplified design with thread-per-request
– suitable for server applications

• no additional value for CPU-bound workloads

24th April 2023 ESW – Lecture 9 46

JAVA Virtual Threads - Details

» example with 100k virtual threads

» after warm-up takes about 1.1 seconds
» with Executors.newFixedThreadPool(1000) it takes about 1000 seconds
» drawbacks

• synchronized pins virtual thread to its carrier -> use RentrantLock
• execution of JNI pins as well
• release carrier only on blocking operation, no preemption !

