
david.sislak@fel.cvut.cz

David Šišlák

david.sislak@fel.cvut.cz

Effective Software

Lecture 8: Data races, synchronization, atomic operations, non-blocking algorithms

[1] Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier, 2008.

[2] Fog, A.: The microarchitecture of Intel, AMD and VIA CPU, 2016.

[3] Russell, K., Detlefs, D.: Eliminating Synchronization-Related Atomic Operations with Biased
Locking and Bulk Rebiasing in OOPSLA’06. ACM, USA 2006.

[4] Oaks, S.: Java Performance: 2nd Edition. O'Reilly, USA 2020.

mailto:sislakd@fel.cvut.cz

7th April 2025 ESW – Lecture 8 3

Outline

» Data races

• Superscalar execution in CPU

• Memory barrier - Volatile variable

» Synchronization

• Reentrant locks

» Atomic operations

• Java support

• Array-based atomic operations

• Complex types

» Non-blocking algorithms

• LIFO

• ConcurrentHashMap

7th April 2025 ESW – Lecture 8 ? 4

Data Races – Multi-threaded Environments

» what can be the results for C and D?

Thread 1 Thread 2

7th April 2025 ESW – Lecture 8 ? 5

Data Races – Multi-threaded Environments

» what can be the results for C and D?

• C=0, D=0

• C=1, D=0

• C=0, D=2

• anything else?

Thread 1 Thread 2

7th April 2025 ESW – Lecture 8 6

instructions reordered in C2 compiler:

» the same reordering happens in method2 resulting into fourth output

• C=1, D=2

Data Races – Disassembled Method and Assembly Code

RSI is this

8B - mark word

4B / 8B – Klass ref.

… object data

Klass – internal JVM

representation of class Metadata

4B – 32bit, or 64bit <32GB heap

8B – 64bit no compressed OOP

Heap object structure:

note: all machine code examples are from JVM 8 64-bit <32GB,

 Intel Haswell CPU in AT&T syntax

7th April 2025 ESW – Lecture 8 7

Data Races – CPU Execution Pipelining

» simplified non-parallel instruction pipelining in each core

» each step is parallelized as well, e.g. Haswell does 4 instructions in single
cycle (execution depends on type and independency of instructions)

7th April 2025 ESW – Lecture 8 8

» CPU vs. core vs. thread

» all writes to main memory are done in write-back cache mode

• standard writes requires data to be cached (expensive cache miss)

• non-temporal writes (especially useful for large block writes)

– content directly queued to memory without caching at all

• prefetch instructions available

Data Races – CPU Memory Model

7th April 2025 ESW – Lecture 8 9

Data Races – CPU Execution Pipelining – Superscalar Execution

» modern CPUs have multiple execution units in each core (8 in Intel Haswell)

• units have various capabilities (4x integer ALU, 2x FPU mul, 2x mem read, …)

• multiple μops with various
latency executed in parallel
during each per cycle

» independent instructions can be
executed out-of-order or in parallel

• not using the same register or
address

» memory reads are never reordered

• parallel independent reads

» later independent reads can be
reordered and executed before
writes

• serialized writes only

7th April 2025 ESW – Lecture 8 10

Volatile Variable – Memory Barrier

making A and B volatile:

results into assembly code:

» memory operations around write to volatile var are not reordered in C1/C2

» instruction lock prefix forbids all instruction reordering around and
synchronize all previous writes to be visible by all other CPUs

» lock addl $0x0,(%rsp) is fastest write memory barrier – no operation inside CPU

» no need for read barriers – not reordered during execution in CPU

8B - mark word

4B / 8B – Klass ref.

… object data

7th April 2025 ESW – Lecture 8 11

Volatile Variable

» never cached thread-locally – all access directly to main memory

» guarantees atomic read and write operations (defines write memory barrier)

» can be used for both primitives and references to objects

» don’t block thread execution

» BUT:

• volatile writes are much slower due to cache flush (~100x)

• volatile reads (if there are writes) are slower (~25x, #CPU/cores)

– due to invalidated cache

• still faster than synchronization/locks

» not necessary for:

• immutable objects

• variable accessed by only one thread (context switch properly flushes
cache already)

• where variable is within complex synchronized operation

7th April 2025 ESW – Lecture 8 ? 12

Counter Example - Volatile

» will it work as expected in multi-threaded environment?

7th April 2025 ESW – Lecture 8 13

Counter Example - Volatile

» will it work as expected in multi-threaded environment?
NO

» volatile

• not suitable for read-update-write operations

• useful for one-thread write (e.g. termination flag)

– must be used if flag is set by different thread otherwise C2
compiler could create infinite loop without testing

RSI is this
increment assembly code:

8B - mark word

4B / 8B – Klass ref.

… object data

7th April 2025 ESW – Lecture 8 ? 14

Volatile Arrays

» Is put operation to array member handled as volatile?

7th April 2025 ESW – Lecture 8 15

Volatile Arrays

» Is put operation to array member handled as volatile?
NO – see assembly code, there is no cache synchronization with lock

ArrayOutOfBoundsException

8B - mark word

4B / 8B – Klass ref.

… object data

8B - mark word

4B / 8B – Klass ref.

sequence of values

4B – array length

7th April 2025 ESW – Lecture 8 16

Volatile Arrays - Solution

» just array reference is volatile

» added unnecessary array reference update adds assembly code

» instruction lock prefix forbids all instruction reordering around and
synchronize previous writes to be visible by all other CPUs

» not suitable for read-update-write operations

8B - mark word

4B / 8B – Klass ref.

… object data

7th April 2025 ESW – Lecture 8 17

Counter Example – Synchronized and ReentrantLock

» no issue with read-update-write operations

» synchronized

• method vs. block

• object instance vs. class instance (static methods)

!

7th April 2025 ESW – Lecture 8 18

JVM - Synchronize Implementation

Mark word (64-bit JVM):

» prototype mark word in Klass

» lock records in stack (at pre-compiled locations for compiled code)

• 8B - displacement of original object mark word – recursive lock has 0

• 4B / 8B – compressed OOP/OPP to locked object

» thin lock is using CAS instruction on lock/unlock to modify mark word

• use spin-locking (10 cycles with volatile read + NOPs) before fat locking

» fat lock is using monitor object on heap (inflating creates, deflating destroys)

• contended lock or call of wait/notify

• monitor: original mark word, OS lock, conditions, set of threads; support
parking

8B - mark word

4B / 8B – Klass ref.

… object data

Klass – internal JVM

representation of class Metadata

4B – 32bit, or 64bit <32GB heap

8B – 64bit no compressed OOP

removed since

Java 15

7th April 2025 ESW – Lecture 8 20

JVM - Synchronize Implementation

» assembly code optimized for
biasing and thin locking

» biased locking startup options:

 -XX:-UseBiasedLocking

 -XX:BiasedLockingStartupDelay=0

 (initial 4 seconds)

removed since Java 15

7th April 2025 ESW – Lecture 8 21

Reentrant Locks

» locking with extended operations in comparison to synchronized

• lock(), unlock()

• lockInterruptibly() throws InterruptedException

• boolean tryLock()

• boolean tryLock(long timeout, TimeUnit unit) throws
InterruptedException

» fairness

• blocked threads are ordered for fair locking

• new ReentrantLock(boolean fair), by default unfair

• synchronized is unfair

• unfair ReentrantLocks are slightly faster than synchronized

– but another instance in HEAP

• fair locks are slower (~100x)

7th April 2025 ESW – Lecture 8 22

Counter Example – AtomicInteger

AtomicInteger implementation

non-blocking

pattern

7th April 2025 ESW – Lecture 8 23

Counter Example – AtomicInteger – Assembly Code

C2 compiler assembly code for AtomicCounter::increment

» while cycle optimized and replaced with single instruction

» instruction lock prefix forbids all reordering around and synchronize previous
writes to be visible by all other CPUs

» instruction lock prefix ensures that core has exclusive ownership of the
appropriate cache line for the duration of the operation

• cache coherency using MESIF (Haswell) with fallback to mem bus lock

» AtomicInteger-based counter is fastest of all for multi-threaded usage

RSI is this, R12=0

null pointer check with exception

7th April 2025 ESW – Lecture 8 24

Atomic Operations

» 32-bit CPUs support 64-bit CAS operations

• cmpxchg src_operand, dst_operand – implicit instruction lock prefix

» 64-bit CPUs support 128-bit CAS operations

• cmpxchg16b – works with RDX:RAX and RCX:RBX register pairs

» JAVA uses only 64-bit CAS operations in java.util.concurrent.atomic

• AtomicBoolean

• AtomicInteger

• AtomicLong

• AtomicReference

• AtomicIntegerArray

• AtomicLongArray

• AtomicReferenceArray

7th April 2025 ESW – Lecture 8 25

Atomic Field Updaters

» suitable for large number of objects of the given type – it saves memory

• don’t require single instance to have an extra object embedded

» refer volatile variable directly without getter and setters

7th April 2025 ESW – Lecture 8 26

Atomic Field Updaters

» but less efficient operations for atomic field updaters

» AtomicIntegerFieldUpdater implementation

» existing field updaters

• AtomicIntegerFieldUpdater

• AtomicLongFieldUpdater

• AtomicReferenceFieldUpdater

» no array field updaters

7th April 2025 ESW – Lecture 8 27

Atomic Complex Types

» AtomicMarkableReference

• object reference along with a mark bit

» AtomicStampedReference

• object reference along with an integer “stamp”

» notes:

• useful for ABA problem

‒ change A -> B and then B -> A

‒ how can I know that A has been changed since the last
observation?

• doesn’t use double-wide CAS (CAS2, CASX) -> much slower than
simple atomic types due to object allocation

7th April 2025 ESW – Lecture 8 28

Atomic Complex Types – Larger Than 64-bits

» AtomicMarkableReference

• object reference along with a mark bit

» AtomicStampedReference

• object reference along with an integer “stamp”

7th April 2025 ESW – Lecture 8 29

Non-blocking Algorithms

» lock-free but not usually wait-free (because of unbounded loops)

• based on CAS / CMPXCHG and LOCK prefixed instructions

» shared resources secured by locks have drawbacks

• high-priority thread can be blocked (e.g. interrupt handler)

• parallelism reduced by coarse-grained locking (unfair locks)

• fine-grained locking and fair locks increases overhead

• can lead to deadlocks, priority inversion (low-priority thread holds a
shared resource which is required by high-priority thread)

» non-blocking algorithms properties:

• outperform blocking algorithms because most of CAS / CMPXCHG
succeeds on the first try

• removes cost for synchronization, thread suspension, context switching

» note: real-time systems require wait-free algorithms (finite number of
steps) and lock-free is not sufficient

7th April 2025 ESW – Lecture 8 30

Non-blocking stack (LIFO)

» Treiber’s algorithm (1986)

push after pop can cause ABA problem

if address is reused !

7th April 2025 ESW – Lecture 8 31

Thread-safe collections and maps

» blocking collections and maps
• static<T> Collection<T> Collections.synchronizedCollection(Collection<T> c)

• static<T> List<T> Collections.synchronizedList(List<T> list)

• static<K,V> Map<K,V> Collections.synchronizedMap(Map<K,V> m)

• static<T> Set<T> Collections.synchronizedSet(Set<T> s)

• also for SortedSet and SortedMap

» non-blocking collections and maps
• ConcurrentLinkedQueue (interface Collection, Queue):

‒ E peek(), E poll(), offer(E) in FIFO manner

• ConcurrentLinkedDeque (interface Collection, Deque):

• allow offering, polling and peaking at both ends of the liner collection

• ConcurrentHashMap (interface Map):

‒ putIfAbsent(K key, V value), remove(Object key, Object value)

‒ replace(K key, V oldValue, V newValue)

• ConcurrentSkipListMap (interface SortedMap), ConcurrentSkipListSet (interface SortedSet)

» non-blocking collections and maps are slower for single-threaded access

• due to usage of CAS instructions

7th April 2025 ESW – Lecture 8 32

ConcurrentHashMap

» concurrent reads – get, iterator

» minimize update contention

• initial concurrency level 16 (can be changed) - # updating threads

– initial insertion into empty segment uses CAS operation

– later modifications are based on segment-based locks

» segment contention

• use lists for <8 elements

• balanced tree to reduce
search times – maintains
next for iteration

7th April 2025 ESW – Lecture 8 33

ConcurrentHashMap

» table resizing (occupancy exceed load factor 0.75)

• power of two expansions

– same index or power of two index

• reusing internal Node if next is not changed – majority of cases

• any thread can help resizing instead of block

• Forward nodes are used to notify users about moved

» provide initialCapacity if estimate is known

	Slide 1: Lecture 8: Data races, synchronization, atomic operations, non-blocking algorithms
	Slide 3: Outline
	Slide 4: Data Races – Multi-threaded Environments
	Slide 5: Data Races – Multi-threaded Environments
	Slide 6: Data Races – Disassembled Method and Assembly Code
	Slide 7: Data Races – CPU Execution Pipelining
	Slide 8: Data Races – CPU Memory Model
	Slide 9: Data Races – CPU Execution Pipelining – Superscalar Execution
	Slide 10: Volatile Variable – Memory Barrier
	Slide 11: Volatile Variable
	Slide 12: Counter Example - Volatile
	Slide 13: Counter Example - Volatile
	Slide 14: Volatile Arrays
	Slide 15: Volatile Arrays
	Slide 16: Volatile Arrays - Solution
	Slide 17: Counter Example – Synchronized and ReentrantLock
	Slide 18: JVM - Synchronize Implementation
	Slide 20: JVM - Synchronize Implementation
	Slide 21: Reentrant Locks
	Slide 22: Counter Example – AtomicInteger
	Slide 23: Counter Example – AtomicInteger – Assembly Code
	Slide 24: Atomic Operations
	Slide 25: Atomic Field Updaters
	Slide 26: Atomic Field Updaters
	Slide 27: Atomic Complex Types
	Slide 28: Atomic Complex Types – Larger Than 64-bits
	Slide 29: Non-blocking Algorithms
	Slide 30: Non-blocking stack (LIFO)
	Slide 31: Thread-safe collections and maps
	Slide 32: ConcurrentHashMap
	Slide 33: ConcurrentHashMap

