
david.sislak@fel.cvut.cz

David Šišlák

david.sislak@fel.cvut.cz

Effective Software

Lecture 7: Virtual machine, JVM bytecode, (de-)compilers, disassembler, profiling

[1] Oaks, S.: Java Performance: 2nd Edition. O'Reilly, USA 2020.

[2] Fog, A.: The microarchitecture of Intel, AMD and VIA CPU, 2016.

[3] JVM source code - http://openjdk.java.net

mailto:sislakd@fel.cvut.cz
http://openjdk.java.net

31th March 2025 ESW – Lecture 7 3

Outline

» Introduction to Virtual Machine

» Memory layout

• Stack, Frames

» JVM bytecode

• Disassembler

• Decompiler

» Just-in-time compilation

• Tiered approach

• Optimizations

• Assembly code analysis

» Safepoint

» Application profiling

• Sampling

• Tracing

31th March 2025 ESW – Lecture 7 4

Introduction – Virtual Machine

» Virtual machine model (NET, JVM – Scala, Kotlin, Jython, JRuby, Clojure, …)

• source code

• compiled into VM bytecode

• hybrid run-time environment (platform dependent VM implementation)

– interpreted bytecode

– complied assembly-code (native CPU code)

– automated platform capability optimizations (e.g. use of SIMD)

» comparison of bytecode to assembly-code

• (+) platform independence (portable) – architecture (RISC/CISC, bits), OS

• (+) reflection – observe, modify own structure at run-time

• (+) small size

• (-) slower execution – interpreted mode, compilation latencies

• (-) less control on assembly code – less options for custom optimization

31th March 2025 ESW – Lecture 7 7

JAVA Virtual Machine – Memory Layout

Thread specific Shared by many threads

31th March 2025 ESW – Lecture 7 8

JAVA Virtual Machine - Frame

» frame

» each thread has stack with frames (outside of heap, fixed length)

 StackOverflowError vs. OutOfMemoryError

» frame is created each time method is invoked (destroyed after return)

- interpreted frame per exactly one method

- complied frame includes all in-lined methods

» frame size determined at source compile-time (in class file for interpreted)

» variables (any type)

» {this} – instance call only!

» {method arguments}

» {local variables}

» operand stack (any type)

» LIFO

» reference to run-time

 constant pool (class def)

» method + class is associated

31th March 2025 ESW – Lecture 7 9

JAVA Virtual Machine – Memory Layout

» References in JVM are called Ordinary Object Pointers (OOP)

• compressed – 32 bit – able to address 32GB heap (using object alignment)

• regular – 64 bit

31th March 2025 ESW – Lecture 7 11

JAVA Virtual Machine – Stack-oriented Machine

» JVM bytecode uses stack-oriented approach for most operations

» stack-oriented - stack machine model for passing parameters and output
for instructions

 (2 + 3) × 11 + 1

» JVM bytecode – sequence of instructions composed of

• opcode – operation code, what should be done

• opcode specific parameters – some has no params, some multiple

timeline

31th March 2025 ESW – Lecture 7 12

JAVA Virtual Machine – Opcodes

» JVM opcode (1 Byte only always):

» load and store (aload_0, istore, aconst_null, …)

» arithmetic and logic (ladd, fcmpl, …)

» type conversion (i2b, d2i, …)

» object manipulation (new, putfield, getfield, …)

» stack management (swap, dup2, …)

» control transfer (ifeq, goto, …)

» method invocation (invokespecial, areturn, …) – frame manipulation

» exceptions and monitor concurrency (athrow, monitorenter, …)

» prefix/suffix – i, l, s, b, c, f, d and a (reference)

» variables as registers – e.g. istore_1 (variable 0 is this for instance method)

VS.

CPU assembly-code

AT&T syntax

JVM bytecode

31th March 2025 ESW – Lecture 7 14

JAVA Virtual Machine – Object Oriented Language

» Class file – product of source code compilation

• one per each class

• method bytecode is included

31th March 2025 ESW – Lecture 7 15

JAVA Virtual Machine – Example 1 – Source Code

notice usage of Generics

31th March 2025 ESW – Lecture 7 16

JAVA Virtual Machine – Example 1 – Class File Content

class constant

pool

31th March 2025 ESW – Lecture 7 17

JAVA Virtual Machine – Example 1 – Disassembled Constants

» javap – JAVA disassembler included in JDK (readable form of class file)

Generics used only

for compilation

31th March 2025 ESW – Lecture 7 18

JAVA Virtual Machine – Example 1 – Disassembled Fields

» descriptor is used by VM – no generics included

» signature is used for compilation – contains Generics

31th March 2025 ESW – Lecture 7 19

JAVA Virtual Machine – Example 1 – Disassembled Method

» getfield

• takes 1 ref from stack

• build an index into runtime pool of class instance by reference this

» areturn

• takes 1 ref from stack

• push onto the stack of calling method

opcode offset in bytecode

for the method employeeData

31th March 2025 ESW – Lecture 7 20

JAVA Virtual Machine – Example 1 – Disassembled Constructor

31th March 2025 ESW – Lecture 7 21

JAVA Virtual Machine – Example 1 – Decompiler

» procyon – open-source JAVA decompiler (bytecode -> source code)

Original source codeDe-compiled source code

31th March 2025 ESW – Lecture 7 22

JAVA Virtual Machine – Example 2 – Source Code

31th March 2025 ESW – Lecture 7 23

JAVA Virtual Machine – Example 2 – daysInMonth Bytecode

continues on the next slide …

31th March 2025 ESW – Lecture 7 24

JAVA Virtual Machine – Example 2 – daysInMonth Bytecode

StackMapTable – define variable types in

 Frame (variables and stack) at every bytecode

 jump target position

 - first stack map automatically determined from

 method descriptor
 - others are differential updates

31th March 2025 ESW – Lecture 7 25

JAVA Virtual Machine – Example 2 – compute Bytecode

No optimization during

source code compilation !

Interpreted code execution

is as inefficient as your source
code !!!

for

cycle

bytecode offset 10 is related to for cycle bytecode start

where there are 4 ints as local variables and no stack

31th March 2025 ESW – Lecture 7 26

JAVA Virtual Machine – Source Code Compilation

» source code compilation (source code => bytecode)

» bytecode is not better than your source code

» invariants in loop are not removed

» no optimizations like

» loop unrolling

» algebraic simplification

» strength reduction

» optionally bytecode can be modified before execution by JVM

• e.g. ProGuard – obfuscator including bytecode optimizations

– shrinker – compact code, remove dead code

– optimizer

• modify access pattern (private, static, final)

• inline bytecode

– obfuscator – renaming, layout changes

– preverifier – ensure class loading

Test yourself
- compute method is
simplified

- faster interpretation
- better JIT output

obfuscation = make code difficult to be understood

by humans but with the same functionality

31th March 2025 ESW – Lecture 7 28

JAVA Virtual Machine – Bytecode Compilation in run-time

» Just-in-time (JIT)

» converts bytecode into assembly code in run-time

» check OpenJDK sources for very detailed information

 http://openjdk.java.net

» JIT includes adaptive optimization (adaptive tiered compilation since version 7)

» balance trade-off between JIT and interpreting instructions

» monitors frequently executed parts “hot spots” including data on caller-callee
relationship for virtual method invocation

» triggers dynamic re-compilation based on current execution profile

» inline expansion to remove context switching

» optimize branches

» can make risky assumption (e.g. skip code) ->

» unwind to valid state

» de-optimize previously JITed code even if code is already executed

» Ahead-of-Time Compilation (AOT) – remove warm-up phase (removed Java 17)

• compile into assembly code prior to launching the virtual machine

http://openjdk.java.net

31th March 2025 ESW – Lecture 7 29

JAVA Virtual Machine – JIT Compilation

» Just-in-time (JIT) compilers – asynchronous (multiple threads)

» C1 compiler – much faster compilation than C2

» simplified inlining, use CPU registers

» window-based optimization over small set of instructions

» intrinsic functions with vector operations SIMD (Math, arraycopy, …)

» C2 compiler – high-end fully optimizing compiler

» dead code elimination, loop unrolling, loop invariant hoisting, common sub-
expression elimination, constant propagation

» full inlining, full de-optimization (back to level 0)

» escape analysis, null check elimination,

» pattern-based loop vectorization and super word packing (SIMD)

» JIT compilation tiers – adaptive compilation levels in JVM

» on-stack replacement (OSR) – optimization during execution of a method

» start at bytecode jump targets (goto, if_)

31th March 2025 ESW – Lecture 7 30

Assembly Code

» reasons to study assembly code (both Java and C/C++)

• educational reasons

– predict efficient coding techniques

• debugging and verification

– how well the code looks like

• optimize code

1. for speed

• avoid poorly compiled patterns

• data fits into cache

• predictable branches or no branches

• use vector programing if possible (SIMD)

» 256bit registers with AVX2 since Intel Sandy Bridge

» 512bit AVX-512 since Intel Knight Landing (Xeon Phi)

• new Vector API as incubator module since Java 16

2. for size

• primarily code cache efficiency

31th March 2025 ESW – Lecture 7 31

JAVA Virtual Machine – Example 2 – Tiered Compilation

» -XX:+PrintCompilation (-XX:+PrintInlining)

{millis from start} {compilation_task_id} {flags} {tier} {class:method} (bytecode size)@OSR {removing not rentrant/zombie}

Notice standard

compilation path

0 -> 3 -> 4

31th March 2025 ESW – Lecture 7 32

JVM – Example 2 – daysInMonth Assembly Code – Tier 3

» -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly

» all examples are in JVM 8 64-bit, Intel Haswell CPU, AT&T syntax

tier 3 - C1 with invocation & backedge counters + MethodDataOop (MDO) cnt.

 because: count="256" iicount="256” hot_count="256”

stack initialization, invocation counter in MDO (0xDC) + trigger C2 (tier 4)

0x1ff8 >> 3 = 1024 invocations trigger tier 4 (C2)

month, year

stacking banging technique, StackOverflowException

stack frame allocation, saving registers

RSP – current stack position

R15 – current thread meta information

RAX – return value

continues on the next slide …

31th March 2025 ESW – Lecture 7 33

JVM – Example 2 – daysInMonth Assembly Code – Tier 3

ESI is month input

default jump

continues on the next slide …

31th March 2025 ESW – Lecture 7 34

JVM – Example 2 – daysInMonth Assembly Code – Tier 3

target for month=4, backedge counter tracking in MDO (0x290):

jump target, inlined TLAB allocation of Integer object:

no space in TLAB -> new TLAB + external allocation

 with header init returns after the inlined allocation

EBX=30 is retVal

RAX Integer instance address

Heap object structure (64-bit JVM):

- header 12 or 16 Bytes

- object data super class first, type grouped

8B - mark word

4B / 8B – Klass ref.

… object data

Heap array object structure (64-bit JVM):

- header 16 or 20 Bytes

- sequence of array values

8B - mark word

4B / 8B – Klass ref.

sequence of values

4B – array length

0x10 Integer instance size

object initialization, header filed with prototype mark

continues on the next slide …

31th March 2025 ESW – Lecture 7 35

JVM – Example 2 – daysInMonth Assembly Code – Tier 3

inlined Integer constructor with supers, invocation counts in MDOs (0xDC)

 Integer::<init>, Number::<init>, Object::<init>

 - currently in tier 3 (C1 counters in MDO)

invocation cnt of Integer::<init> in daysInMonth for inline

invocation cnt in Integer::<init> + trigger its C2 (tier 4)

invocation cnt of Number::<init> in Int::<init> for inline

invocation cnt in Number::<init> + trigger its C2 (tier 4)

invocation cnt of Object::<init> in Numb::<init> for inline

invocation cnt in Object::<init> + trigger its C2 (tier 4)

RAX.value = EBX (retVal)
continues on the next slide …

31th March 2025 ESW – Lecture 7 36

JVM – Example 2 – daysInMonth Assembly Code – Tier 3

final cleanup and return, RAX contains return value (pointer to Integer instance)

» Ordinary Object Pointer (Oop) – flexible reference to an object

» safepoint – Oops in perfectly described state by OopMap (GCmaps)

• Oop can be safely manipulated externally while thread is suspended

• in interpreted mode – between any 2 byte codes

• in C1/C2 compiled – end of all methods (not in-lined), non-counted loop back
edge,
 during JVM run-time call

• parked, blocked on IO, monitor or lock

• while running JNI (do not need thread suspension)

• global safepoint (all threads) – stop the world

– GC, print threads, thread dumps, heap dump, get all stack trace

– class redefinition (e.g. instrumentation), debug

– enableBiasedLocking, RevokeBias (removed since Java 17)

• local safepoint (just executing thread)

– de-optimization, OSR

stack dealocation, reload register
safepoint poll check

31th March 2025 ESW – Lecture 7 37

JVM – Time To Safe Point

» Time To Safe Point (TTSP) – how long it takes to enter safepoint

-XX:+PrintSafepointStatistics -XX:+PrintGCApplicationStoppedTime -XX:PrintSafepointStatisticsCount=1

TTSP overhead in profiler while calling GetStackTrace example with 5 threads:

T
T

S
P

31th March 2025 ESW – Lecture 7 38

JVM – Example 2 – daysInMonth Assembly Code – Tier 4

tier 4 – C2 compiler – no profile counters

 because: count="5376" iicount="5376” hot_count="5376”

stack initialization, use lookup table jump for table switch

default (>=12)

month, year

continues on the next slide …

31th March 2025 ESW – Lecture 7 39

JVM – Example 2 – daysInMonth Assembly Code – Tier 4

target for month=4

 Integer.<init>, Number.<init>, Object.<init> - iicount=“5376” -> Inline (hot)

optimized branching, inlined TLAB allocation, inlined constructors, no nulling,
caching optimization

EBP=30 is retVal

TLAB Integer object allocation, ref in RAX

MarkWord fetch from class and then store

compressed OOP to Integer class

RAX.value = EBX (retVal)

final cleanup

RAX contains return value (pointer to Integer instance)

cache optimization 3 cache lines ahead

31th March 2025 ESW – Lecture 7 40

JVM – Example 2 – daysInMonth Assembly Code – Tier 4

target for default

 class IllegalArgumentException no profile -> uncommon -> reinterpret

remap inputs, return back to reinterpreter

then tier 3 code version is discarded

31th March 2025 ESW – Lecture 7 41

JVM – Example 2 – compute Assembly Code – Tier 4 OSR

OSR @10 – On Stack Replacement at bytecode 10

tier 4 – C2 (before there was tier 3 OSR @10 because 60416 loops and tier 3)

 because: backedge_count=”101376" hot_count=”101376”

copy 4 locals on stack from tier3 OSR @10 to regs

RSI compiled stack of

tier 3 OSR @10

continues on the next slide …

31th March 2025 ESW – Lecture 7 42

JVM – Example 2 – compute Assembly Code – Tier 4 OSR

loop criteria

then there is inlined tier 4 daysOfMonth (lookup jump) because the call is hot

ending with addition into accumulator o

reinterpret on end of cycle jump (unstable if bytecode), save 3 locals to stack

EBX is local i; 0xF4240 = 1 000 000

31th March 2025 ESW – Lecture 7 43

JVM – Example 2 – compute Assembly Code – Tier 4

tier 4 – C2

 because: count=”2” backedge_count=”150528”

use combination of full inline, dead code elimination, object escape, loop
invariant hoisting, strength reduction

30 000 000

RAX contains return value (primitive int)

31th March 2025 ESW – Lecture 7 44

Java Virtual Machine – Performance

» requires warm-up to utilize benefits of C2 (or C1)

» compilers cannot do all magic -> write better algorithms

» 32-bit vs 64 bits JVMs

• 32-bit (max ~3GB heap)

– smaller memory footprint

– slower long & double operations

• 64-bit max 32GB virtual memory (with default ObjectAlignmentInBytes)

- faster performance for long & double

– slight increase of memory footprint

– compressed OOPs are slightly slower for references upon usage

– compressed OOPs less memory -> less frequent GC -> faster program

• 64-bit >32GB virtual memory (large heap)

– fast reference usage

– wasting a lot of memory (48GB ~32GB with compressed OOPs)

31th March 2025 ESW – Lecture 7 45

Java Virtual Machine – CPU and Memory Profiling

» profiling

• CPU – time spent in methods

• memory – usage, allocations

» modes

• sampling

– periodic sampling of stacks of running threads

– no invocation counts, no 100% accuracy (various sampling errors)

– no bytecode (& assembly code) modifications

– 1-2% impact to standard performance (TTSP, thread dumps, analysis)

• tracing (instrumetation) - method entry, exit, traceObjAllocations

– instrumented bytecode -> affected performance -> affected compiler
optimizations

» visualvm

• JVM monitoring, troubleshooting and profiling tool

• included in JDK 6-8 (jvisualvm), now standalone tool

31th March 2025 ESW – Lecture 7 46

JVM – Example 2 – CPU Tracing of daysOfMonth

assembly code of tier 4 – C2 (before there was very complex tier 3)

inlined daysInMonth rootMethodEntry tracking

749 Bytes of assembly code for each rootMethodEntry

31th March 2025 ESW – Lecture 7 47

JVM – Example 2 – CPU Tracing of daysOfMonth

additional rootMethodEntry and rootMethodExit trackings for

 Integer::<init> and Number::<init>

inlined rootMethodExit after Integer instance.value = retVal

313 Bytes of assembly code for each rootMethodEntry

31th March 2025 ESW – Lecture 7 48

JVM – Example 2 – CPU Tracing Outcome

31th March 2025 ESW – Lecture 7 49

JVM – Example 2 – Profiling Performance

» CPU tracing of compute method results into much slower code

• no object escape from daysInMonth call

• no invariant hoisting

• no strength reduction (full loop remains there)

» object allocation tracing is similar with traceObjAlloc injected calls

» recommended approach

• do sampling first

• identify performance bottlenecks (where most time is spent)

– it could be outside of JVM (e.g. latency of external DB, file system)

• focus with tracing just to identified parts

31th March 2025 ESW – Lecture 7 50

JVM – Java Mission Control

jmc – included in JDKs, sampling in Flight recorder

31th March 2025 ESW – Lecture 7 51

Approach to Performance Testing

» test real application – ideally the way it is used

• microbenchmarks – measure very small units

– warm-up – to measure real code, not compilers itself, biased locks

• keep in mind caching

– beware of compilers – use results, reordering of operations

– synchronization – multi-threaded benchmarks

– vary pre-calculated parameters affecting complexity – different
optimization in reality

• macrobenchmarks – measure application input/output

– least performing component affects the whole application

» understand throughput, elapsed and response time

• outliers can occur – e.g. GC

• use existing generators than writing own

31th March 2025 ESW – Lecture 7 52

Approach to Performance Testing

» understand variability – changes over time

• internal state

• background effects – load, network

• probabilistic analysis – works with uncertainty

» test early, test often – ideally part of development cycle

• ideally some properly repeated benchmarking

• automate tests – scripted

• proper test coverage of functionality and inputs

• test on target system – different code on different systems

	Slide 1: Lecture 7: Virtual machine, JVM bytecode, (de-)compilers, disassembler, profiling
	Slide 3: Outline
	Slide 4: Introduction – Virtual Machine
	Slide 7: JAVA Virtual Machine – Memory Layout
	Slide 8: JAVA Virtual Machine - Frame
	Slide 9: JAVA Virtual Machine – Memory Layout
	Slide 11: JAVA Virtual Machine – Stack-oriented Machine
	Slide 12: JAVA Virtual Machine – Opcodes
	Slide 14: JAVA Virtual Machine – Object Oriented Language
	Slide 15: JAVA Virtual Machine – Example 1 – Source Code
	Slide 16: JAVA Virtual Machine – Example 1 – Class File Content
	Slide 17: JAVA Virtual Machine – Example 1 – Disassembled Constants
	Slide 18: JAVA Virtual Machine – Example 1 – Disassembled Fields
	Slide 19: JAVA Virtual Machine – Example 1 – Disassembled Method
	Slide 20: JAVA Virtual Machine – Example 1 – Disassembled Constructor
	Slide 21: JAVA Virtual Machine – Example 1 – Decompiler
	Slide 22: JAVA Virtual Machine – Example 2 – Source Code
	Slide 23: JAVA Virtual Machine – Example 2 – daysInMonth Bytecode
	Slide 24: JAVA Virtual Machine – Example 2 – daysInMonth Bytecode
	Slide 25: JAVA Virtual Machine – Example 2 – compute Bytecode
	Slide 26: JAVA Virtual Machine – Source Code Compilation
	Slide 28: JAVA Virtual Machine – Bytecode Compilation in run-time
	Slide 29: JAVA Virtual Machine – JIT Compilation
	Slide 30: Assembly Code
	Slide 31: JAVA Virtual Machine – Example 2 – Tiered Compilation
	Slide 32: JVM – Example 2 – daysInMonth Assembly Code – Tier 3
	Slide 33: JVM – Example 2 – daysInMonth Assembly Code – Tier 3
	Slide 34: JVM – Example 2 – daysInMonth Assembly Code – Tier 3
	Slide 35: JVM – Example 2 – daysInMonth Assembly Code – Tier 3
	Slide 36: JVM – Example 2 – daysInMonth Assembly Code – Tier 3
	Slide 37: JVM – Time To Safe Point
	Slide 38: JVM – Example 2 – daysInMonth Assembly Code – Tier 4
	Slide 39: JVM – Example 2 – daysInMonth Assembly Code – Tier 4
	Slide 40: JVM – Example 2 – daysInMonth Assembly Code – Tier 4
	Slide 41: JVM – Example 2 – compute Assembly Code – Tier 4 OSR
	Slide 42: JVM – Example 2 – compute Assembly Code – Tier 4 OSR
	Slide 43: JVM – Example 2 – compute Assembly Code – Tier 4
	Slide 44: Java Virtual Machine – Performance
	Slide 45: Java Virtual Machine – CPU and Memory Profiling
	Slide 46: JVM – Example 2 – CPU Tracing of daysOfMonth
	Slide 47: JVM – Example 2 – CPU Tracing of daysOfMonth
	Slide 48: JVM – Example 2 – CPU Tracing Outcome
	Slide 49: JVM – Example 2 – Profiling Performance
	Slide 50: JVM – Java Mission Control
	Slide 51: Approach to Performance Testing
	Slide 52: Approach to Performance Testing

