

ESW

T4
Benchmarking

Benchmarking vs profiling
● Benchmarking measures how much time or

resources consumed

● Profiling tells you where your code spends time
or resources

What do we want to know?
Benchmarking

● How long does it take? (10ms vs 10s)
● How much memory does it consume? (10MB vs 10GB)
● How does it compare? (2x faster, 10x slower)

Profiling
● Why is it slow? (“int solve() takes 90% of time”)
● Why am I running out of memory? (“Map<Node> has

67GB”)

Common pitfalls in benchmarking
● What’s wrong with this?

long start = System.nanoTime();
int result = sumArray(data);
long time = System.nanoTime() - start;
System.out.println(time / 1_000_000.0 + " ms");

● What’s wrong with this?

● We only measure once.
● What if we get lucky/unlucky?
● This doesn’t tell us anything about the variance.

Common pitfalls in benchmarking
● We might attempt to fix it like this:

long start = System.nanoTime();
for (int i = 0; i < 100; i++) { // Let's run it a hundred times
 sumArray(data);
}
long time = System.nanoTime() - start;
System.out.println(time / 100 / 1_000_000.0 + " ms");

● We need to warm it up.

Warmup
● Even if we tried, there are factors out of our

control.
// Warmup
for (int i = 0; i < 10_000; i++) {
 sumArray(data);
}
long start = System.nanoTime();
for (int i = 0; i < 100; i++) {
 sumArray(data);
}
long time = System.nanoTime() - start;
System.out.println(time / 100 / 1_000_000.0 + " ms");

● JVM may still optimize the loops out, switch to a
different profile each time, decide to GC...

What do we need?
● Pin down all variables

– OS, GC, compiler, hardware

● Realism
– benchmark the way it runs in production
– cold vs warm state

● Statistical significance
– confidence intervals, p-values, hypothesis testing

Benchmarking frameworks
● Java

– JMH, the gold standard
– Caliper, old google tool

● C++
– Google Benchmark
– nanobench

@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@CompilerControl(CompilerControl.Mode.DONT_INLINE)
public class ListBenchmark {
 @Param({"64", "1024", "4096"}) private int size;
 @Benchmark
 public void arrayList(Blackhole bh) {
 List<Integer> list = new ArrayList<>();
 for (int i = 0; i < size; i++) {
 list.add(i);
 }
 bh.consume(list);
 }
}

#include <benchmark/benchmark.h>

static void BM_VectorPush(benchmark::State& state) {
 for (auto _ : state) {
 std::vector<int> v;
 for (int i = 0; i < state.range(0); i++) {
 v.push_back(i); }
 }
 benchmark::DoNotOptimize(v);
 benchmark::ClobberMemory();
 }
}
BENCHMARK(BM_VectorPush)->Range(64, 4096);
BENCHMARK_MAIN();

Benchmarking frameworks
● Rust

- criterion
- built-in bench macro

● C#
- benchmarkdotnet

fn bench_with_config(c: &mut Criterion) {
 let mut group = c.benchmark_group("custom");
 group.warm_up_time(std::time::Duration::from_secs(3));
 group.sample_size(200);
 group.bench_function("fib 20", |b| { b.iter(|| fibonacci(black_box(20))) });
 group.finish();
}

[MemoryDiagnoser]
[SimpleJob(warmupCount: 3, iterationCount: 10)]
public class FibonacciBenchmarks
{
 [Params(10, 20)]
 public int N { get; set; }

 [Benchmark]
 public ulong Fibonacci() => ComputeFib(N);

 [Benchmark(Baseline = true)]
 public ulong FibonacciBaseline() => ComputeFib(20);
}

Dictionary - JMH
● Warmup - Initial runs discarded from

measurement; lets JIT compile, caches fill, CPU
frequency stabilize

● Iteration - One measured time period containing
multiple invocations

● Invocation - Single execution of the benchmarked
method

● Fork - Running benchmark in a separate process
to isolate from JVM/runtime state

Dictionary - Statistics

● Percentile - Value below which X% of
measurements fall; p99 = 99% of requests were
faster than this.

● Confidence interval - statistical range where
the true value likely lies

How to read the output?
 Calculated time Conf. interval Units Mode Standard deviation

Patterns – insufficient warmup
● JIT compilation and class loading cause initial

instability. Measurements taken before
stabilization are unreliable.

Patterns – constant input
● CPU caches, branch prediction, and JIT

optimizations make repeated identical inputs
artificially fast.

Patterns – unstable measurement
● Excessive variance from system noise, GC

interference, or thermal throttling makes results
meaningless.

Patterns – input not large enough
● Measurement resolution insufficient. Timer

granularity dominates, or compiler optimized
away the work entirely.

Patterns – mem. leak / GC pressure
● Performance degrades as memory

accumulates. GC pauses become more
frequent and severe over time.

Patterns – random spikes
● Sporadic extreme values from GC pauses, OS

scheduling, or external interference. Require
statistical filtering.

Patterns - ideal
● Clear warmup phase followed by stable steady-

state measurements with low variance.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

