ESW

T4
Benchmarking

Benchmarking vs profiling

* Benchmarking measures how much time or
resources consumed

Benchmark Mode Cnt Score Error Units

JMHSample_01_HelloWorld.loop thrpt 5 46.369 + 21.786 ops/s

:::::::::

* Profiling tells you where your code spends tlme

ssssssssssssssssss

Or resources O - e

(Wrte) Wirte N[CWienFosh
Ceampresson)wite | e —
Ccompressor) defiate | 1] Coompresson cetate |
[Coompres..[¢]
[Crutmansiwiten..
[Chuttmangiowi| | [chotfm |
[Chur T
I l! compress/fl;
@ | - [
I ! total: 36.76 n
7]
II Focus
i

What do we want to know?

Benchmarking

How long does it take? (10ms vs 10s)

How much memory does it consume? (10MB vs 10GB)
How does it compare? (2x faster, 10x slower)

Profiling

Why is it slow? (“int solve() takes 90% of time”)

\é\éh Bq,gn | running out of memory? (“Map<Node> has

Common pitfalls in benchmarking

* What’s wrong with this?

long start = System.nanoTime();

Int result = sumArray(data);

long time = System.nanoTime() - start;
System.out.printin(time / 1_000_000.0 + " ms"),

* We only measure once.
* What if we get lucky/unlucky?
* This doesn’t tell us anything about the variance.

Common pitfalls in benchmarking

* We might attempt to fix it like this:

long start = System.nanoTime();
for (inti=0; i< 100; i++) {
sumArray(data);

}

long time = System.nanoTime() - start;
System.out.printin(time / 100 /1_000_000.0 + " ms");

* We need to warm it up.

Warmup

e Even If we tried, there are factors out of our

control.

// Warmup _
for (inti=0;i<10_000; i++) {
sumArray(data);

?ong_start = System.nanoTime();
for(inti=0; i< 100; i++) {
sumArray(data);

?ong time = System.nanoTime() - start;
System.out.printin(time / 100 / 1_000_000.0 + " ms");

* JVM may still optimize the loops out, switch to a
different profile each time, decide to GC...

What do we need?

* Pin down all variables
- 0S, GC, compiler, hardware

e Realism
- benchmark the way it runs in production
- cold vs warm state

e Statistical significance
- confidence intervals, p-values, hypothesis testing

Benchmarking frameworks

e Java

- JMH, the gold standard
— Caliper, old google tool

e C++

- Google Benchmark

nanobench

@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit. MICROSECONDS)
@CompilerControl(CompilerControl.Mode.DONT _INLINE)
public class ListBenchmark {
@Param({'64", "1024", "4096"}) private int size;
@Benchmark
public void arrayList(Blackhole bh) {
List<Integer> list = new ArrayList<>();
for (inti=0;i < size; i++) {
list.add(i);

bh.consume(list);

}
}

#include <benchmark/benchmark.h>

static void BM_VectorPush(benchmark::State& state) {
for (auto _ : state) {
std::vector<int> v;
for (inti = 0; i < state.range(0); i++) {
v.push_back(i); }

benchmark::DoNotOptimize(v);
benchmark::ClobberMemory();

}

}
BENCHMARK(BM_VectorPush)->Range(64, 4096);
BENCHMARK_MAIN();

Benchmarking frameworks

e R u St fn bench_with_config(c: &mut Criterion) {
let mut group = c.benchmark_group(“custom");
. . group.warm_up_time(std::time::Duration::from_secs(3));
- C r I te rl O n group.sample_size(200);
group.bench_function(fib 20", |b| { b.iter(|| fibonacci(black_box(20))) });
. . group.finish();
- built-in bench macro
(] C# [MemoryDiagnoser]
[SimpleJob(warmupCount: 3, iterationCount: 10)]

public class FibonacciBenchmarks

- benChmarkdOtnet { [Params(10, 20)]

public int N { get; set; }

[Benchmark]
public ulong Fibonacci() => ComputeFib(N);

[Benchmark(Baseline = true)]
public ulong FibonacciBaseline() => ComputeFib(20);

Dictionary - JMH

Warmup - Initial runs discarded from
measurement; lets JIT compile, caches fill, CPU
frequency stabilize

Iteration - One measured time period containing
multiple invocations

Invocation - Single execution of the benchmarked
method

Fork - Running benchmark in a separate process
to isolate from JVM/runtime state

Dictionary - Statistics

* Percentile - Value below which X% of
measurements fall; p99 = 99% of requests were
faster than this.

* Confidence interval - statistical range where
the true value likely lies

How to read the output?

Calculated time Conf. interval Units Mode Standard deviation

. .

0.230 +(99.9%) 0.059 ns/op [Average]
(min, avg, max) = (0.215, 0.230, 0.255), stdev = 0.015
CI (99.9%): [0.171, 0.290] (assumes normal distribution)

34.1% | 34.1%

Patterns — insufficient warmup

« JIT compilation and class loading cause initial
iInstability. Measurements taken before
stabilization are unreliable.

200

tttttttttt

Patterns — constant input

* CPU caches, branch prediction, and JIT
optimizations make repeated identical inputs
artificially fast.

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

Iterations

Patterns — unstable measurement

* Excessive variance from system noise, GC
Interference, or thermal throttling makes results
meaningless.

120

90
(=R
o
~
wn
= 60

30

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

Iterations

Patterns — input not large enough

* Measurement resolution insufficient. Timer
granularity dominates, or compiler optimized
away the work entirely.

0.0104

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

tttttttttt

Patterns — mem. leak / GC pressure

* Performance degrades as memory
accumulates. GC pauses become more
frequent and severe over time.

200

ms/o

100

lllllllllllllllllllllllllllll

THavrarinne

Patterns — random spikes

* Sporadic extreme values from GC pauses, OS
scheduling, or external interference. Require
statistical filtering.

ms/

Patterns - ideal

* Clear warmup phase followed by stable steady-
state measurements with low variance.

WARMUP STEADY STATE

Ttearatinne

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

